

How Advanced Ultrasound Techniques Are Used in Assisted Conception

Angela Clough

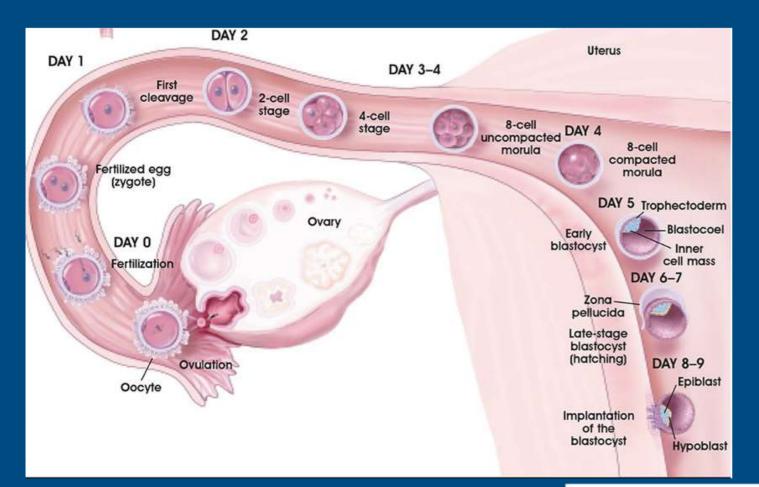
Advanced Practice Sonographer

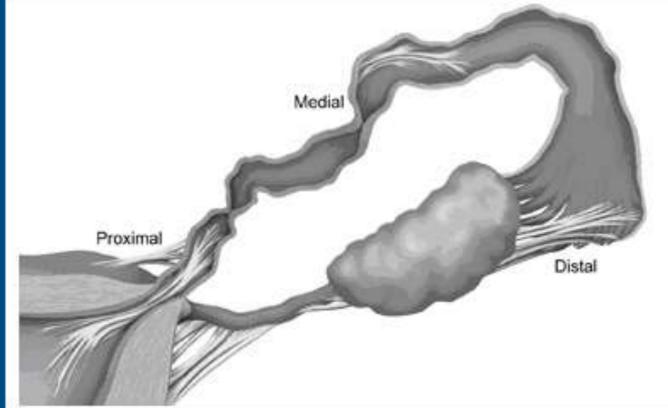
Derriford Hospital, Plymouth

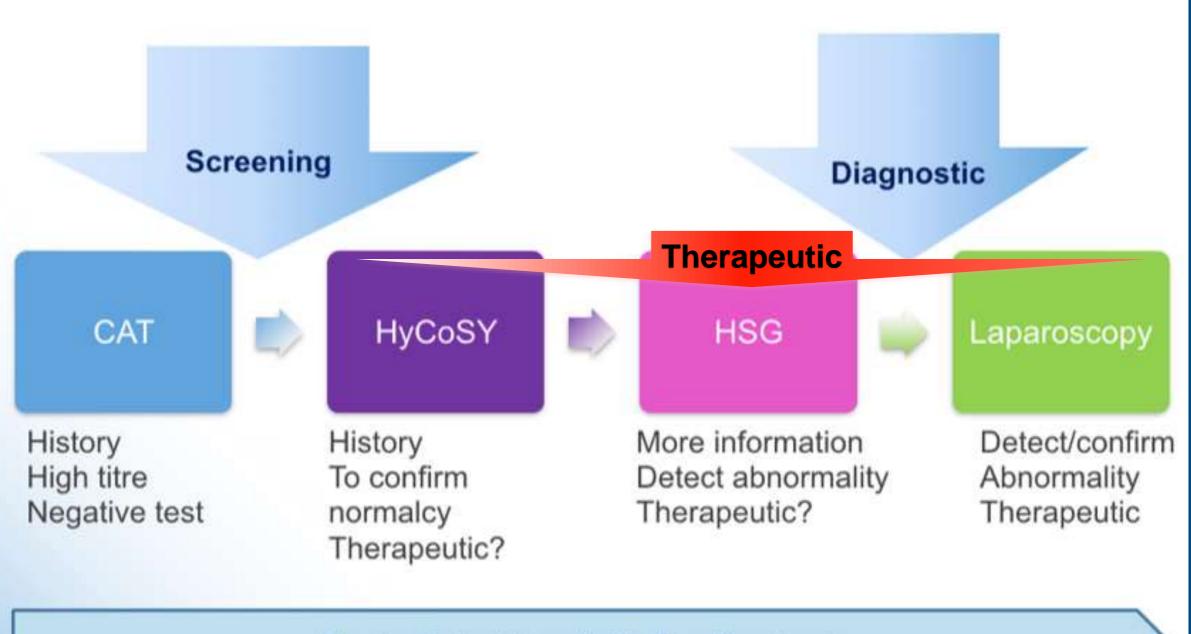
BMUS AGM 12/12/24

Contrast imaging - HysteroContrastSonography–HyCoSy - Saline infusion sonography - SIS - Contrast-enhanced US - CEUS

3D ultrasound


Elastography


Tubal factors in infertility


- Occlusion of tubes is the most common cause of infertility in women
- Accounts for 12% -33% of infertility overall
- 186 million people affected worldwide

Fallopian tube

Assessment of tubal patency

No single test is suitable for all patients

Validation of HyCoSy

Study		Study	Sample size	Study type	Reference	Sensitivity	Specificity (%)	PPN (%)	NPV (%)	C (%)
		design			standard	(%)				
1	Holz et al. (1997)	MA	1,007	HyCoSy HyCoSy	HSG LSC	-	-	87.2 89.7	96.1 92.3	83.1 83.3
2	Campbell et al. (1994)	R	600	HyCoSy	HSG	-	-	-	-	84-91 80-93
3	Hamilton et al. (1998)	R	185	HyCoSy	LSC	90.4	70.3	91.2	68.2	85.8
4	Strandell et al. (1999)	P, B	103	HyCoSy	HSG	-		-		72.0
			43	HyCoSy	LSC	27.0	90.0	75.0	88.0	80.0
		/	43	HSG	LSC	73.0	87.0	47.0	94.0	83.0
5	Chenia et al. (1997)	P, B	50	HyCoSy	HSG		-	-		85.0
6	Radic et al. (2005)	P.B	68	HyCoSy	LSC	100.0	77.0	70.0	100.0	-
7	Mitri et al. (1991)	P, B	00	HyCoSy	HSG	-	-	-	-	72.0
В	Hamed et al. (2009)	P, B	57	HyCoSy	LSC	76.1	79.4	71.4	83.1	78.1
		III WO	57	HSG	LSC	81.8	77.1	69.2	87.1	79.9
9	Kiyokawa et al. (2000) ^b	P, B	25	HyCoSy	HSG	84.4ª	100.0 ^a	100.0 ^a	33.0 ^a	84.0
10	Deichert et al. (1989)	P	219	HyCoSy	LSC	83.7	87	63.2	87.0	86.3
	/		68	HyCoSy	HSG	80.6	85	65.9	92.4	83.8
			23	HSG	LSC	71.4	84.4	-	-	80.4
11	Deichert et al. (1987)	P	76	HyCoSy	HSG	100.0	90			87.5
	/				or LSC					
12	Degenhardt et al. (1996)	P	57	HyCoSy	LSC	-	-	-	-	90.9
	/		20	HyCoSy	HSG		-	-	-	89.2
13	Tanawattanacharoen et al. (2000)	Р	60	HyCoSy	LSC	an the second	red —langers (pr		i – Aen	80.0
14	Reis et al. (1988)	P	44	HyCoSy	LSC	85.2	85.2	71.9	92.9	85.2
	Contractory and the second		44	HSG	LSC	85.2	83.6	69.7	92.7	84.1
15	Inki et al. (1998)	Р	32	HyCoSy	LSC	90.2ª	83.3ª	94.9 ^a	71.4ª	88.7
16	Exacoustos et al. (1996)	Р	38	HyCoSy	HSG	80.0	94.0	84.0	92.0	89.6
			15	HyCoSy	LSC	75	91	75	91	86.7
			15	HSG	LSC	88	86	70	95	86.7
17	Volpi et al. (2003)	P	29	HyCoSy	LSC	80.0	85.0	85.0	80.0	82.7
			10	HyCoSy	HSG		-	-	-	100.0
18	Dietrich et al. (1996)	P	20	HyCoSy	LSC		-		-	82.5

Saunders. Tubal patency assessment. Fertil Steril 2011

Conclusion(s)

Increasing evidence supports the more recently described hysterosalpingocontrast sonography procedure as an acceptable screening study for the subfertile patient with the potential advantage that it is a comprehensive evaluation, methodologically simple, cost effective, and time efficient.

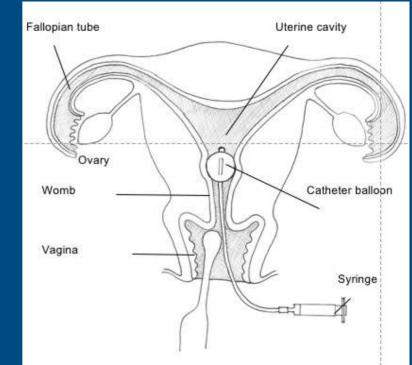
NICE recommendations

1.3.8 Investigation of suspected tubal and uterine abnormalities

1.3.8.2 Where appropriate expertise is available, screening for tubal occlusion using hysterosalpingocontrast-ultrasonography should be considered because it is an effective alternative to hysterosalpingography for women who are not known to have comorbidities. [2004] Advantages and limitations of HyCoSy

Simple, convenient

Well tolerated


Good uterine and adnexal

assessment

May be therapeutic (flushing and/or immune response?)

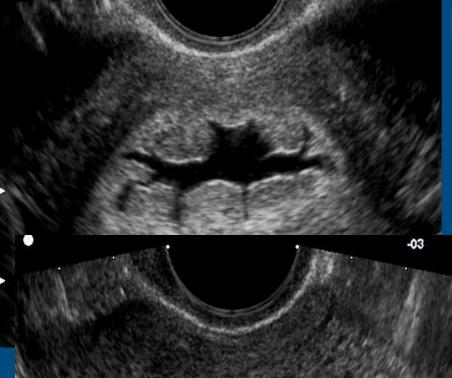
Limited detail of endosalpinx

No current corrective treatment

HyCoSy video

Saline infusion sonography

'Aqua Scan' 'Sonohysterography'


'Hysterosonography'

Instillation of saline into the uterine cavity under real-time ultrasound- saline is anechoic and sometimes called a 'negative contrast'

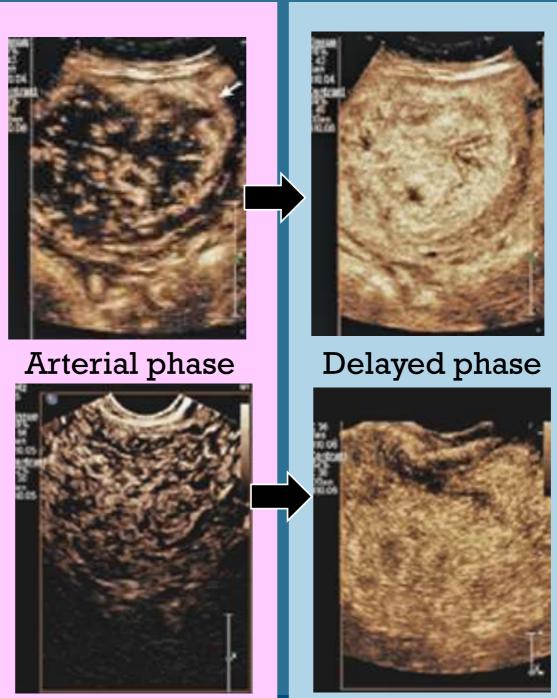
Uterine cavity malformations have a prevalence of 11-40% in infertile population

Saline infusion sonography video

Pathology detected with Saline Infusion Sonography

Gn -2 C7 / M5 P3 / E3 SRI II High

Contrast-enhanced ultrasound (CEUS)


-Microvascular imaging shows differential perfusion between pathological lesions and healthy tissues - observing 'type' and 'timing' of perfusion

- Well established for assessing upper abdominal organs and to a degree in small parts ultrasound

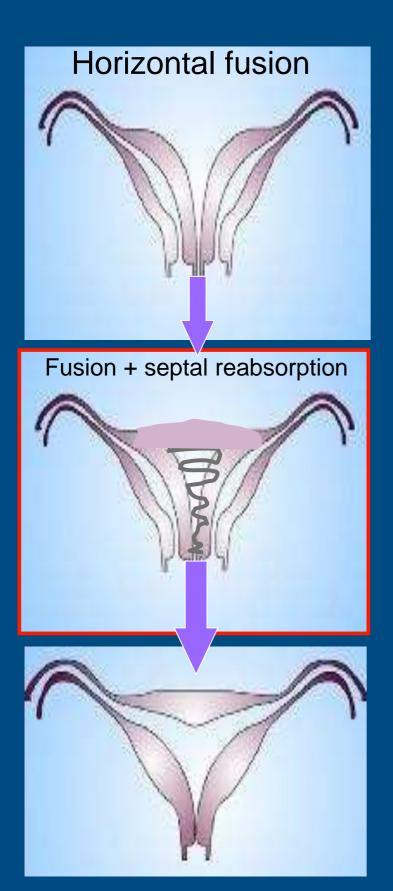
Fibroid

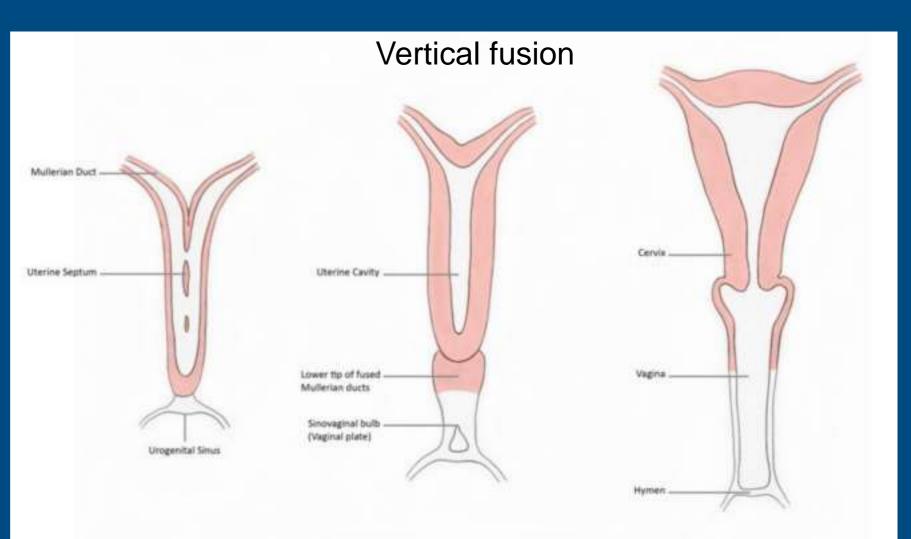
Adenomyosis

Source: AC Fleisher, J.S. Abramowicz, L.F. ManningMonteagudo, I. E Timor: Fleisher's Sonography in Obstetrics and Gynaecology: textbook and Teaching Cases, Eigth Edition Copyright@ McGraw-Hall Eductation All rights reserved

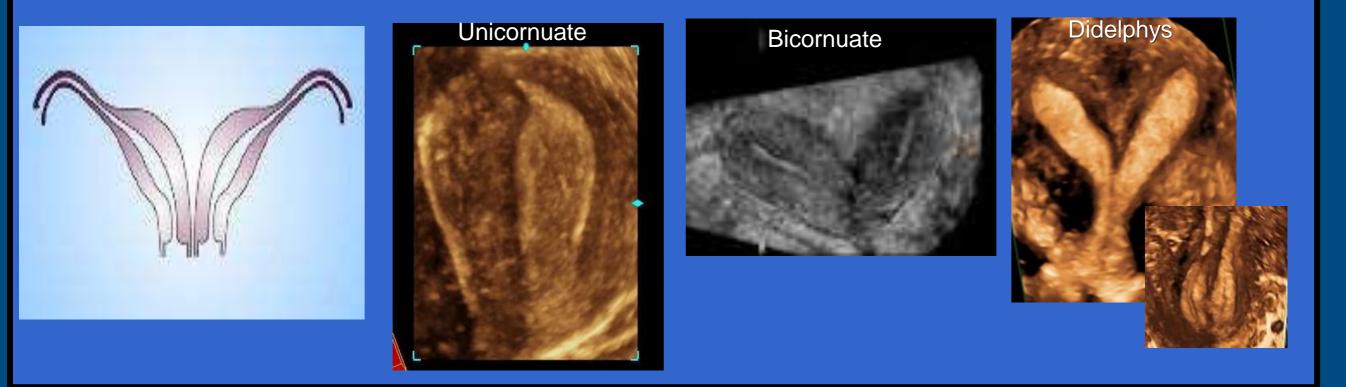
Role of 3D ultrasound in the infertile patient

Longitudinal plane Transverse plane



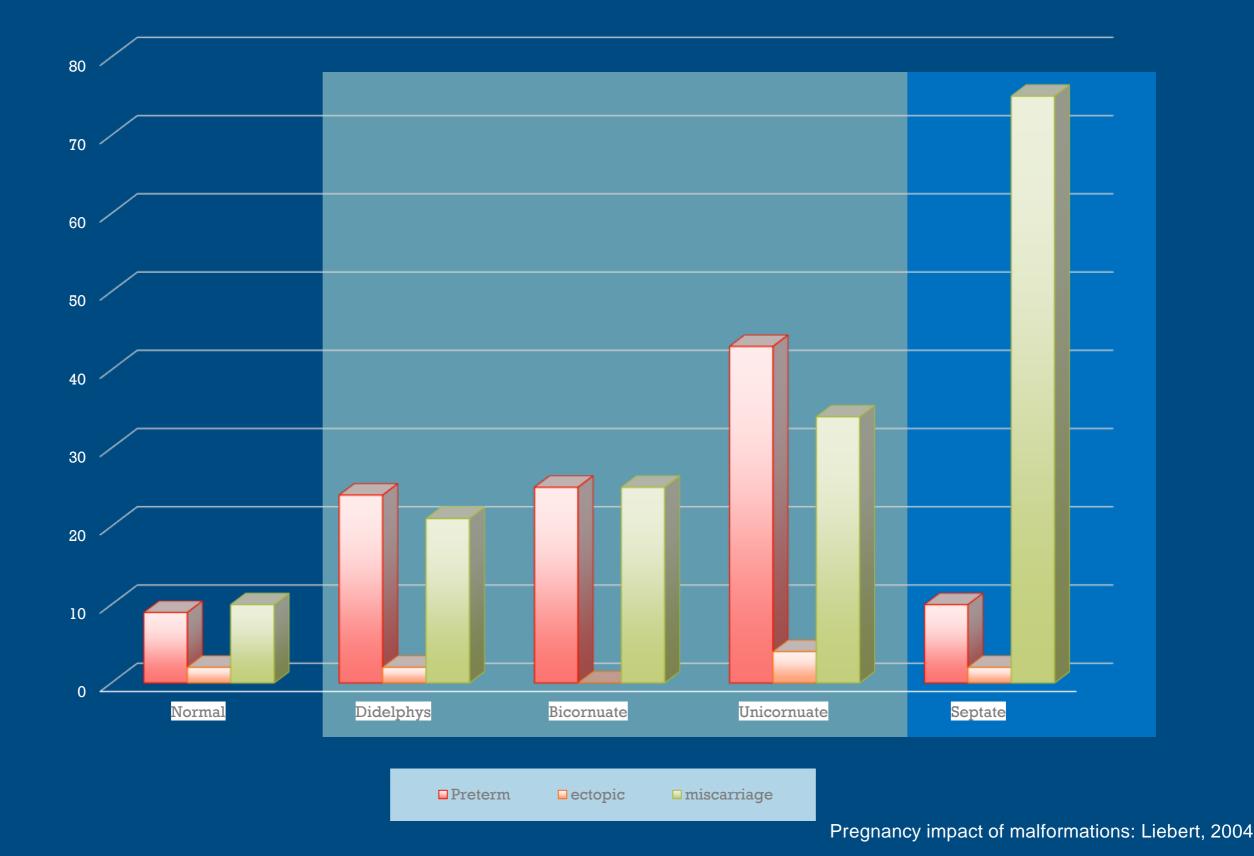


Coronal plane


Mullerian duct development

Horizonal fusion uterine malformations

Bicorporeal



Unicorporeal

Pregnancy impact of bicorporeal and unicorporeal uterine malformations

Obstetric implications of uterine malformations

1st trimester

Septal myometrium and endometrium may not adequately support developing embryo

2nd + 3rd Trimester

Abnormal uterine – volume - vasculature - muscle mass - contractility

Cervical incompetence/abnormality

Unicorporeal malformation

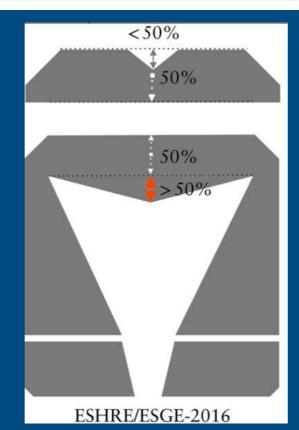
Bicorporeal malformations

Bicornuate

Classification systems of Mullerian Duct abnormalities

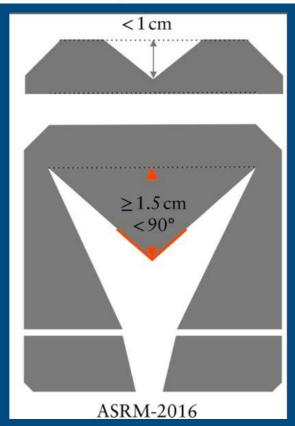
European Society of Human

Reproduction & Embryology (ESHRE)


1988 American Fertility Society (AFS)

2013

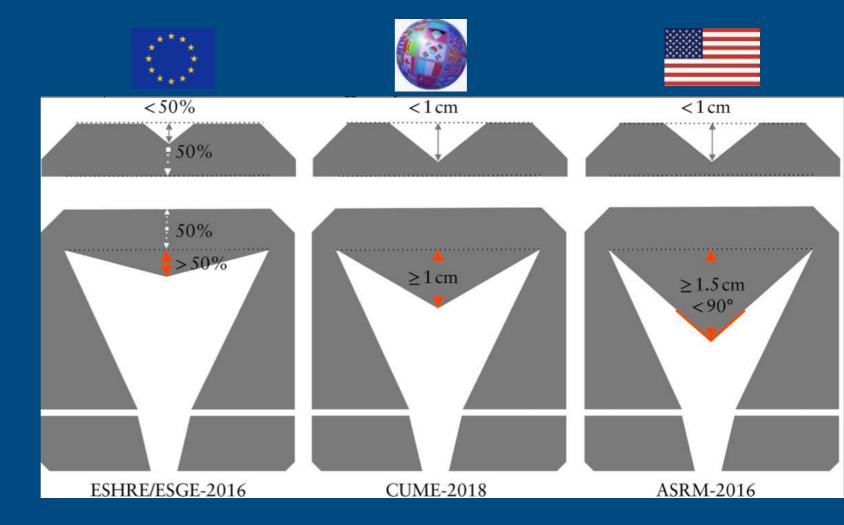
Class I – Uterine /Cx agenesis


- Class II Unicornuate uterus
- Class III Didelphys uterus
- Class IV Bicornuate uterus
- Class V Septate uterus
- Class VI Arcuate uterus
- Class VII DES exposure

ର	Shree	ESHRE/ESGE classific Female genital tract an		
		Iterine anomaly	Cervical	/vaginal anomaly
	Main class	Sub-class	Co-exist	ent class
U0	Normal uterus		co	Normal cervix
U1	Dysmorphic uterus	a. T-shaped	C1	Septate cervix
		b. Infantilis c. Others	C2	Double 'normal' cervix
U2	Septate uterus	a. Partial b. Complete	C3	Unilateral cervical aplasia
			C4	Cervical aplasia
U3	Bicorporeal uterus	a. Partial		
		 b. Complete c. Bicorporeal septate 	VO	Normal vagina
U4	Hemi-uterus	 a. With rudimentary cavity (communicating or not horn) 	V1	Longitudinal non-obstructin vaginal septum
		 Without rudimentary cavity (horn without cavity/no horn) 	V2	Longitudinal obstructing vaginal septum
U5	Aplastic	 With rudimentary cavity (bi- or unilateral horn) 	V3	Transverse vaginal septum and/or imperforate hymen
		b. Without rudimentary cavity (bi- or	V4	Vaginal aplasia

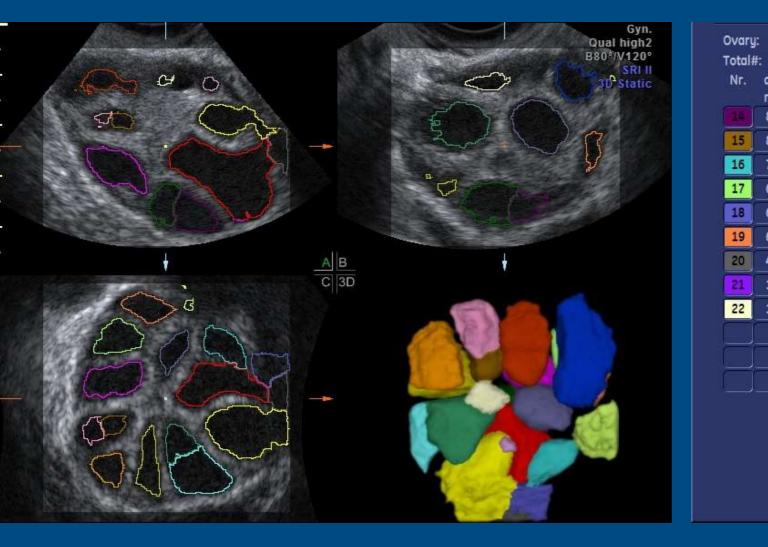
2016/2021 American Society for Reproductive medicine (ASRM)

Main Category	Subcategories						
	 Complete Müllerian agenesis 						
Mullerian agenesis	- Müllerian agenesis with R/L atrophic uterine remnant with functional						
	endometrium						
Cervical agenesis	- Complete Cervical agenesis						
	- Distal Cervical agenesis						
	 R/L Unicornuate uterus 						
	 R/L Unicornuate with R/L distal atrophic uterine remnant 						
Unicornuate uterus	- R/L Unicornuate with R/L distal uterine remnant with functional endometrium						
	 R/L Unicornuate with R/L associated atrophic uterine remnant 						
	- R/L Unicornuate with R/L uterine horn communicating at level of cervix						
1	 Uterus didelphys and complete longitudinal vaginal septum 						
Uterus Didelphys	- Uterus didelphys and +/- longitudinal vaginal septum of variable length						
Contraction of the second second	 Uterus didelphys and obstructed R/L hemi vagina 						
	 Bicornuate uterus (with single cervix) 						
	 Bicornuate uterus with R/L communicating tract 						
Bicornuate uterus	- Uterus bicornuate bicollis						
	 Combined bicornuate septate uterus 						
	- Partial septate uterus						
	- Normal/arcuate uterus						
	- Robert's uterus (Septate uterus with non-communicating hemi uterus)						
Septate uterus	- Complete septate uterus with duplicated cervices and longitudinal vaginal						
	septum						
	- Complete septate uterus with septate cervix and longitudinal vaginal septum						
	- Complete septate uterus, duplicated cervices, and obstructed R/L hemi vagina						
2	 Midvaginal septum 						
Transverse vaginal septum	 Distal vaginal agenesis 						
	 Longitudinal vaginal septum of variable length 						
	- Longitudinal vaginal septum of variable length and uterus didelphys						
	- Longitudinal vaginal septum of variable length and complete septate uterus wit						
Longitudinal vaginal septum	n duplicated cervix						
	 Obstructed R/L hemi vagina and uterus didelphys 						
	- Obstructed R/L hemi vagina and complete septate uterus with duplicated cervic						
	 Bicornuate uterus with bilateral obstructed endometrial cavities 						
	- Uterus didelphys with communicating hemi uteri and unilateral R/L cervico-						
	vaginal atresia						
Complex anomalies	 Obstructed R/L hemi vagina, hemi uterus and single cervix with separate 						
C 5.200 8	contralateral R/L patent hemi uterus, cervix and vagina						
	 Bicornuate uterus with R/L communicating tract and transverse vaginal septum 						
	 Uterus isthmus agenesis 						

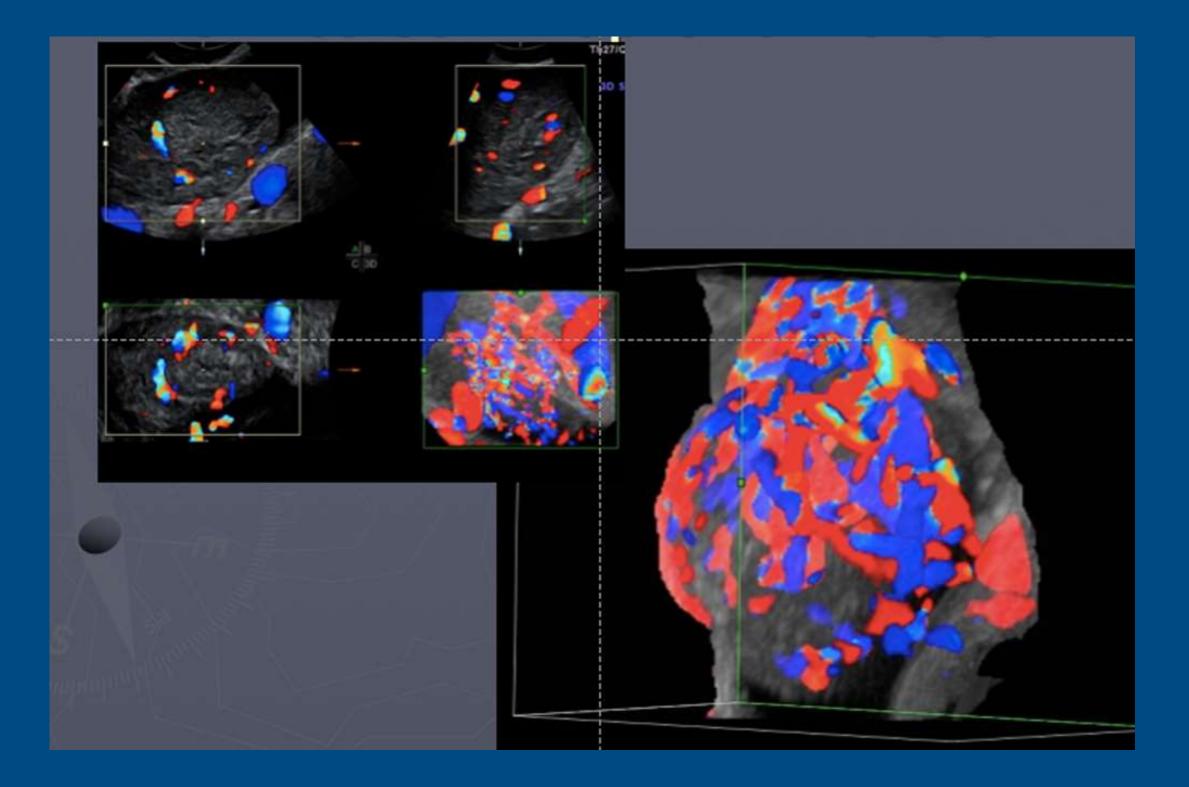

Congenital Uterine Malformation by Experts (CUME): Better criteria for distinguishing between normal/arcuate and septate uterus?

Proposed modification of prior recommendations -

Septal length >10mm
Septal angle <140° and
Indentation-wall thickness ratio of >110%


Or

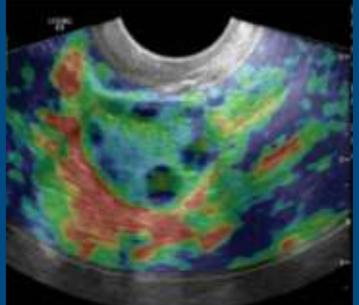
use septal indention of
 10mm alone as the
 simplest most reproducible
 criteria.


A Ludwin er al. Ultrasound Obstet Gynecol. 2018 Jan

3D assessment of superovulated ovaries

	Left 22					Ovar Total	16 - C	Rig 25	t			
d(V) mm	dx mm	dy mm	dz mm	mn. d mm	V cm ³	Nr.	d(V) mm	dx mm	dy mm	dz mm	mn. d mm	V cm ³
8.5	12.5	8.8	6.5	9.3	0.32	14	9.3	12.3	11.0	7.2	10.2	0.43
8.4	12.9	10.1	4.8	9.3	0.31	15	9.0	15.8	7.4	6.9	10.1	0.38
7.2	9.4	8.3	5.2	7.6	0.19	16	8.2	10.5	9.7	6.1	8.8	0.28
6.3	9.3	6.2	5.1	6.8	0.13	17	8.1	14.3	7.9	5.4	9.2	0.28
6.2	9.1	6.5	5.4	7.0	0.13	18	7.7	11.7	7.5	5.6	8.3	0.24
6.1	7.9	6.1	5.3	6.4	0.12	19	7.7	10.7	7.7	6.1	8.2	0.24
4.7	6.4	5.1	3.4	5.0	0.05	20	7.4	9.1	7.8	6.4	7.8	0.21
1.9	2.2	2.0	1.9	2.0	<0.01	21	5.3	6.9	5.3	4.3	5.5	0.08
1.6	1.8	1.8	1.5	1.7	<0.01	22	5.2	6.7	5.2	4.6	5.5	0.07
				ļ —		23	5.1	6.8	5.1	4.4	5.4	0.07
			ſ			24	4.4	6.2	4.4	3.6	4.7	0.04
				[25	2.6	3.6	3.1	2.2	2.9	<0.01

3D colour map of a fibroid



Other advantages of 3D

Elastography

Elastography (SWE) used to measure stiffness of tissue

- Stiffness is age related change in ovary due to inflammation and fibrosis
- Elastography can effectively act as a 'biomarker' for ovarian fibrosis
- Fibroisis particularly associated with PCOM and ovarian cancer
- Uterus Fibroids and adenomyosis stiffer that normal myometrium

Elastography Active areas of research

Fibroids and adenomyosis – elastography can aid diagnosis and assess potential therapies

PCOS – have increased fibrosis - monitoring may provide -early diagnostic tool, -monitor disease progression -efficacy of treatment

Endometriosis - Ovarian stroma adjacent to endometriomas significantly stiffer than in an ovary with a haemorrhagic cyst

Cervical incompetence- elastography can assess for premature softening of the cervix providing a potential biomarker for assessing preterm labour

Conclusion

 Advanced techniques in ultrasound are highly advantageous for assessing the infertile patient

 HyCoSy, SIS and 3D ultrasound are well established techniques

 Use of vascular contrast agents and elastography have potential but are not currently used in routine assessment

angelaclough@nhs.net