THE USE OF CONTRAST ENHANCED ULTRASOUND (CEUS) FOR THYROID NODULE CLASSIFICATION

Hannah Grocutt

BMUS 2024

AGENDA

- Current gold standard for thyroid nodule classification
- Ultrasonographic diagnosis
- Introduction to CEUS for thyroid nodules
- Literature review
- Alternative contemporary advance
- Summary

GOLD STANDARD FOR THYROID NODULE CLASSIFICATION

- Ultrasound scan +/-FNA
- Rapid On-Site Evaluation (ROSE) or Remote ROSE if available

(BMJ best practice, 2023; BMUS, 2023; BTA Perros et al., 2014; NICE, 2020; NICE, 2023; Martyn and Wheeldon, 2024)

(Martyn and Wheeldon, 2024)

BTA U GRADING (BTA., 2014)...

TI-RADS (ACR TESSLER ET AL., 2017)

COMPOSITION	ECHOGENICITY	SHAPE	MARGIN	ECHOGENIC FOCI	
(Choose 1) Cystic or almost 0 points completely cystic Spongiform 0 points litixed cystic 1 point and solid Solid cr almost 2 points completely solid	(Choose 1) Anechoic 0 points Hyperschoic or 1 point isoechoic 2 points Very hypoechoic 3 points	(Choose 1) Wider-than-tail 0 points Taller-than-wide 3 points	(Choose 1) Smooth 0 points Ill-defined 0 points Lobulated or 2 points imgular Extra-thyroidal 3 points extension	(Choose All That Apply) None or large 0 point cornet-tail artifacts Macrocalcifications 1 point Peripheral (rim) 2 point caldifications Punctate echogenic 3 point foci	
0 Points TR1 Benign No FNA	2 Points TR2 Not Suspicious No FNA	3 Points TR3 Mildly Suspicious FNA.# 2.25 cm	4 to 6 Points TR4 Moderately Suspicious FNA # 2 1.5 cm	7 Points or More TR5 Highly Suspicious FNA if a t cm	
COMPOSITION	ECHOGENICITY	SHAPE	MARGIN	ECHOGENIC FOCI	
Spongiform: Composed predomi- nantly (>50%) of small cystic spaces. Do not add further points for other categories. Mixed cystic and solid: Assign points for predominant solid component. Assign 2 points if composition cannot be determined because of	Anechoic: Applies to cystic or almost completely cystic nodules. Hyperschoio/tsoechoio/hypoechoic: Compared to adjacent parenchyma. Very hypoechoic: More hypoechoic than strap muscles. Assign 1 point if echogenicity cannot be determined.	Taller-than-wide: Should be assessed on a transverse image with measure- ments parallel to sound beam for height and perpendicular to sound beam for width. This can usually be assessed by visual inspection.	Lobulated: Protrusions into adjacent tissue. Irregular: Jagged, spiculated, or sharp angles. Extrathyroidal extension: Obvious invasion = malignancy. Assign 0 points if margin cannot be determined.	Large comet-tail artifacts: V-shaped, >1 mm, in cystic components. Macrocalotifications: Cause acoustic shadowing. Peripheral: Complete or incomplete along margin. Punctate echogenic foct May have small comet-tail artifacts.	

ACR TI-RADS

Hannah Grocutt

"Fieler to discussion of pepillary microcarcinomes for 5-9 mm TPS notules.

CONTRAST ENHANCED ULTRASOUND

- Safer than CT and MRI contrast as the microbubbles are quickly breathed out with no effect on organ performance and no radiation involved
- Sulphur hexafluoride (microbubbles) injected into a vein
- The microbubbles reflect the sound waves more clearly as they course through blood stream
- Useful information found in how quickly an area of interest perfuses and the pattern of perfusion
- Current main uses are for liver and kidneys in the UK
- Recent studies have successfully utilised for thyroid nodules

(RADZINA ET AL., 2021; EMEDZ, 2024; BMUS, 2023)

(EMEDZ, 2024)

EXAMPLE CEUS SCORING SYSTEM (LI ET AL, 2023)

CEUS TIRADS	The CEUS diagnostic criteria
ACR TIRADS + 1 level	Hypo-enhancement and blurred enhanced margin
ACR TIRADS + 0 level	Hypo-enhancement or blurred enhanced margin
ACR TIRADS – 1 level	Iso-/hyper-enhancement and smooth enhanced margin

ULTRASOUND IMAGES OF CEUS FOR A THYROID NODULE - EXAMPLE CASE

(WANG ET AL, 2021)

- Hypoechoic nodule
- Wider than tall
- Internal and peripheral vascularity
- U-grading = 3

TI-RADS = 4

ULTRASOUND IMAGES OF CEUS FOR A THYROID NODULE - EXAMPLE CASE (WANG ET AL, 2021)

CEUS shows late wash-out, signifying benignity

CEUS score of - 1 (hyper enhancement and smooth enhanced margin)

Diagnosis = Follicular adenoma

Hannah Grocutt

LITERATURE SELECTION PROCESS

MeSH search with Medline and PubMed

Key terms: "CEUS, Contrast enhanced ultrasound, thyroid, ultrasound, nodules"

LITERATURE SEARCH PROCESS (AVEYARD, 2023)

Exclusion criteria applied in stage 3 and 4

- Meta analysis study
- Review based studies
- Sample size of < 200
- Specific nodules (e.g. mummified or isthmus)
- Studies utilising multiple imaging modalities
- CEUS for non-thyroid or non-nodular purposes

NUMBER OF PUBLICATIONS PER YEAR SINCE 2018, ON CEUS FOR THYROID (PUBMED, 2024)

THE LITERATURE...

LI ET AL, 2023

Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multicentre Study

RUAN ET AL, 2022

A Practical CEUS Thyroid Reporting System for Thyroid Nodules

ZHANG ET AL, 2018

The Value of Peripheral Enhancement Pattern for Diagnosing Thyroid Cancer Using Contrast-Enhanced Ultrasound

LITERATURE REVIEW

Paper & year	No of Authors	Affiliations and place of research	Cohort size	Scoring system	Type of study	Diagnostic accuracy CEUS	Diagnostic accuracy US alone	Sens/ spec	Unnecessary biopsy rate	Cases with diagnostic mismatch between CEUS and US
Li et al, 2023	15 (radiologists with more than 10 years US experience)	9 medical centres/ hospitals in China	515	TI-RADS and CEUS TI-RADS	Prospective double blinded Qualitative	90%	80%	NA	42%	17 cases incorrectly identified under ultrasound (3 false positives and 14 false negatives)All were correctly categorised under Contrast enhanced ultrasound.
Ruan et al, 2022	12 (11 radiologists, 1 head and neck surgeon)	3 university hospitals in China	756	TI-RADS and CEUS TI-RADS	Retrospective blinded Qualitative	95%	87%	NA	34% n=82	Not known
Zhang et al, 2018	6 (all radiologists)	1 hospital in China	240	TI-RADS	Prospective Double blinded Qualitative	96%	90%	97.6%/ 98.7%	38%	25 nodules 23 nodules (92%) misdiagnosed as malignant by conventional US which were diagnosed correctly by CEUS

LITERATURE REVIEW

Paper & year	No of Authors	Affiliations and place of research	Cohort size	Scoring system	Type of study	Diagnostic accuracy CEUS	Diagnostic accuracy US alone	Sens/ spec	Unnecessary biopsy rate	Cases with diagnostic mismatch between CEUS and US
Li et al, 2023	15 (radiologists with more than 10 years US experience)	9 medical centres/ hospitals in China	515	TI-RADS and CEUS TI-RADS	Prospective double blinded Qualitative	90%	80%	NA	42%	17 cases incorrectly identified under ultrasound (3 false positives and 14 false negatives)All were correctly categorised under Contrast enhanced ultrasound.
Ruan et al, 2022	12 (11 radiologists, 1 head and neck surgeon)	3 university hospitals in China	756	TI-RADS and CEUS TI-RADS	Retrospective blinded Qualitative	95%	87%	NA	34% n=82	Not known
Zhang et al, 2018	6 (all radiologists)	1 hospital in China	240	TI-RADS	Prospective Double blinded Qualitative	96%	90%	97.6%/ 98.7%	38%	25 nodules 23 nodules (92%) misdiagnosed as malignant by conventional US which were diagnosed correctly by CEUS

CONCLUSION

- Each study found higher accuracy for diagnosis of malignant nodules with CEUS than with ultrasound alone
- Useful for categorising more urgent referrals
- Reduce need for unnecessary FNA
- Useful for follow up after treatment
- CEUS is more time consuming and more expensive than conventional US
- Standardisation through further research is required
- This review is not generalisable to UK due to lack of studies

REFERENCES

- Aveyard, H. (2023) Doing a literature review in health and social care: a practical guide. 5th edition. London: Open international.
- BMJ best practice (2023) BMJ Best Practice: Management of thyroid mass. November 2023 [online]. Available from: https://bestpractice.bmj.com/topics/en-gb/1200
 [Accessed 28 June 2024].
- ϕ BMUS (2023) Guidelines for professional ultrasound practice. December 2023 [online]. Available from:
- //https://www.bmus.org/media/resources/files/_2023_SoR_and_BMUS_guidelines_8th_Ed_FINAL.pdf [Accessed 1 June 2024].
- © BTA Perros, P. et al. (2014) Guidelines for the management of thyroid cancer. Clinical Endocrinology [online]. 81 (s1), pp. 1–122.
- EMEDZ (2024) Sulfur hexaflouride lipid microspheres. 2024 [online]. Available from: https://emedz.net/public/blog/sulfur-hexafluoride-lipid-microspheres-lumason [Accessed 2 July 2024].
- Giusti, M., Orlandi, D., Melle, G., Massa, B., Silvestri, E., Minuto, F. and Turtulici, G. (2013) Is there a real diagnostic impact of elastosonography and contrast-enhanced ultrasonography in the management of thyroid nodules? Journal of Zhejiang University SCIENCE B [online]. 14 (3), pp. 195–206.
- LI, F., ZHANG, J., WANG, Y. and LIU, L. (2015) Clinical value of elasticity imaging and contrast-enhanced ultrasound in the diagnosis of papillary thyroid microcarcinoma.
 Oncology Letters [online]. 10 (3), pp. 1371–1377.
- Li, J. et al. (2023) Contrast Enhancement Ultrasound Improves Diagnostic Accuracy for Thyroid Nodules: A Prospective Multicenter Study. Journal of the Endocrine Society [online]. 8 (1).
- Martyn, S. and Wheeldon, L. (2024) Telecytology remote rapid on-site evaluation for ultrasound-guided head and neck fine needle aspiration utilising a clinical imaging assistant with an extended practice role. Cytopathology [online]. 35 (3), pp. 371–377.
- NICE (2020) NICE guidance: Neck lump. October 2020 [online]. Available from: https://cks.nice.org.uk/topics/neck-lump/management/thyroid-lump/ [Accessed 28 June 2024].
- NICE (2023) Thyroid disease: assessment and management. October 2023 [online]. Available from: https://www.nice.org.uk/guidance/NG145 [Accessed 29 June 2024].
- PubMed (2024) Contrast enhanced ultrasound for thyroid nodules. July 2024 [online]. Available from: https://pubmed.ncbi.nlm.nih.gov/?term=contrast+enhanced+ultrasound+for+thyroid+nodules&filter=years.2018-2024 [Accessed 7 July 2024].
- Radzina, M., Ratniece, M., Putrins, D.S., Saule, L. and Cantisani, V. (2021) Performance of Contrast-Enhanced Ultrasound in Thyroid Nodules: Review of Current State and Future Perspectives. Cancers [online]. 13 (21), p. 5469.
- Ruan, J. et al. (2022) A Practical CEUS Thyroid Reporting System for Thyroid Nodules. Radiology [online]. 305 (1), pp. 149–159.
- ACR Tessler, F.N. et al. (2017) ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. Journal of the American College of Radiology [online]. 14 (5), pp. 587–595.
- Wang, Y., Dong, T., Nie, F., Wang, G., Liu, T. and Niu, Q. (2021) Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules With Non-Hypovascular. Frontiers in Oncology [online]. 11.
- Zhang, Y., Zhang, M., Luo, Y., Li, J., Wang, Z. and Tang, J. (2018) The Value of Peripheral Enhancement Pattern for Diagnosing Thyroid Cancer Using Contrast-Enhanced Ultrasound. International Journal of Endocrinology [online]. 2018, pp. 1–7.
- Zhou, X., Zhou, P., Hu, Z., Tian, S.M., Zhao, Y., Liu, W. and Jin, Q. (2018) Diagnostic Efficiency of Quantitative Contrast-Enhanced Ultrasound Indicators for Discriminating Benign From Malignant Solid Thyroid Nodules. Journal of Ultrasound in Medicine [online]. 37 (2), pp. 425–437.

THANK YOU FOR LISTENING

Hannah Grocutt

Email: <u>Hannah.Grocutt@nhs.net</u>

This presentation underwent an accessibility assessment and no concerns were found