

Safety, Efficacy, and Compliance of Ultrasound in Medical Applications

Srinath Rajagopal Science Area Leader Ultrasound and Underwater Acoustics

Day 1, Plenary 3, Ultrasound Physics 1 Tuesday, 10 December Ultrasound 2024, Coventry

THE MEASURE OF ALL THINGS

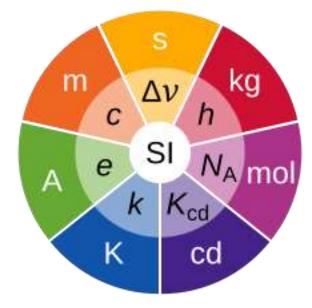
National Measurement System (NMS)

An infrastructure of laboratories that deliver world-class measurement science and technology and provide traceable and increasingly accurate standards of measurement.

Laboratory

Office for Product Safety & Standards

Department for Science, Innovation, & Technology



800 scientists with a breadth and depth of metrology expertise.

Providing the UK's Measurement Capability

- Metrology is the science of measurement.
- Provides confidence in measurement results and data traceable to SI units.

 \odot

SI base units (outer ring) and constants (inner ring). Except K_{cd} all others are fundamental constants of nature.

National Challenges

Contents

Department for Business, Energy & Industrial Strategy

UK Measurement Strategy

for the National Measurement System

UK Measurement Strategy	
Foreword	
A strategy for the UK's National Measurement System _	
The health and wellbeing of a growing population	_ 1(
Managing and reducing our environmental impact	_ 1
Increasing prosperity and supporting innovation	_ 1
The National Measurement System	_ 1
Partnerships	_ 2
Delivering this strategy	_ 2
Leading within the global measurement community	_ 2
Strengthening the UK's measurement skills	_ 2
Playing a vital role in the UK's quality infrastructure	_ 2
Supporting and enabling innovation in the UK	_ 2
References	_ 2

Why Quantify Ultrasound?

ф gov.uk			
Home > Brexit	5.5.2017 EN	Official Journal of the European Union	L 117/1
Guidance Regulating medical devices in the UK	REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND OF THE CO	DUNCIL
		of 5 April 2017	
What you need to do to place a medical device on the Great Britain. Northern Ireland and European Union (EU) markets.	on medical devices, amending Directive 20	01/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 12 Directives 90/385/EEC and 93/42/EEC	23/2009 and repealing Council
Gui	telines for the safe use of	diagnostic ultrasound equipment	7
Cluit	Tennes for the sale use of	diagnostic ultrasound equipment	
Prepa	red by the Safety Group of the Britisl	h Medical Ultrasound Society	
Ultraso	und 2010; 18: 52-59. DOI: 10.1258/ult.2010.1000	03	

NPLO

Compliance to Standards

International Electrotechnical Commission

IEC standards are specific to electrical and electronic technologies ➤To prepare international standards, and other publications, with focus on safety and performance of medical equipment, software, and systems.

• IEC Technical Committee 87 – Ultrasonics

Characteristics, methods of measurement, safety, and specifications of fields, equipment and systems in the domain of ultrasonics.

Safety Indices of Ultrasound

Mechanical Index (MI)

$$MI = \frac{p_{r,\alpha} \cdot f_{awf}^{-1/2}}{C_{MI}}$$

- f_{awf} acoustic pressure f_{awf} acoustic working frequency $C_{MI} = 1 \text{ MPa MHz}^{-1/2}$ $P_{1 \times 1}$ bounded square-output power

Thermal Index (TI)

$$TIS = \frac{P_{1 \times 1} \cdot f_{awf}}{C_{TIS,1}}$$

Safety indices are not without their criticisms!

AIUM Technical Bulletin 🔂 Free Access

How to Interpret the Ultrasound Output Display Standard for **Diagnostic Ultrasound Devices: Version 3**

First published: 17 November 2019 | https://doi.org/10.1002/jum.15159 | Citations: 5

Guidelines for the safe use of diagnostic ultrasound equipment

Prepared by the Safety Group of the British Medical Ultrasound Society Ultrasound 2010; 18: 52-59. DOI: 10.1258/ult.2010.100003

Note to Physicians and Sonographers on Potential Underestimation of Acoustic Safety Indexes for Diagnostic Array Transducers

Publisher: IEEE Cite This PDF

Keith A. Wear : Shahram Vaezy All Authors

Abstract:

Two scientists from the U.S. Food and Drug Administration comment on limitations of acoustic safety indexes that can arise from spatial averaging effects of hydrophones that are used to measure acoustic output.

Published in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (Volume: 68, Issue: 3, March 2021)

Ultrasound Obstet Gynecol 2017; 50: 236-241 Published online 20 June 2017 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.17298

Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index

Ultrasound in Medicine & Biology Volume 25, Issue 6, July 1999, Pages 1009-1018

Original Contributions

Acoustic saturation and output regulation

Francis A Duck a 😤 🖾

Conditionally Increased Acoustic Pressures in Nonfetal **Diagnostic Ultrasound Examinations Without Contrast Agents:** A Preliminary Assessment

Kathryn R. Nightingale PhD, Charles C. Church PhD, Gerald Harris PhD, Keith A. Wear PhD, Michael R. Bailey PhD, Paul L. Carson PhD, Hui Jiang PhD ... See all authors v

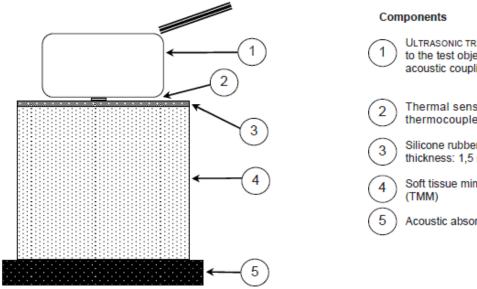
First published: 01 July 2015 | https://doi.org/10.7863/ultra.34.7.15.13.0001 | Citations: 49

Safety Limits

FDA Document: Marketing Clearance of Diagnostic Ultrasound Systems and Transducers

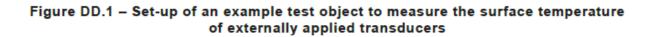
Use	I _{SPTA.3} [mW / cm²]	I _{SPPA.3} [mW / cm ²]	or MI
Peripheral Vessel	720	190	1.9
Cardiac	430	190	1.9
Foetal Imaging & Other	94	190	1.9
Ophthalmic	17	28	0.23

How to Quantify Ultrasound?


What are the Different Measurands

Surface Temperature

BS EN 60601-2-37:2008+A1:2015 IEC 60601-2-37:2008+A1:2015 (E) - 41 -

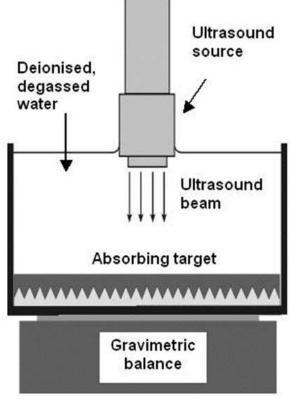

ULTRASONIC TRANSDUCER under test, coupled to the test object using acoustic coupling gel

Thermal sensor, e.g. thin film thermocouple

Silicone rubber. thickness: 1.5 mm

Soft tissue mimicking material Acoustic absorber

IEC 1533/07



Teirlinck et. al., DOI: 10.1016/S0041-624X(97)00150-9 Ramnarine et. al., DOI: 10.1016/s0301-5629(00)00304-5 Browne et. al., DOI: 10.1016/s0301-5629(03)00053-x

Madsen EL et. al., DOI: 10.7863/jum.1999.18.9.615 Wear et al., DOI: 10.7863/jum.2005.24.9.1235 Sun et al., DOI: 10.1016/j.ultrasmedbio.2012.02.030 Rajagopal et al., DOI: 10.1016/j.ultrasmedbio.2014.04.018

Acoustic Power

Radiation Force Balance (RFB)

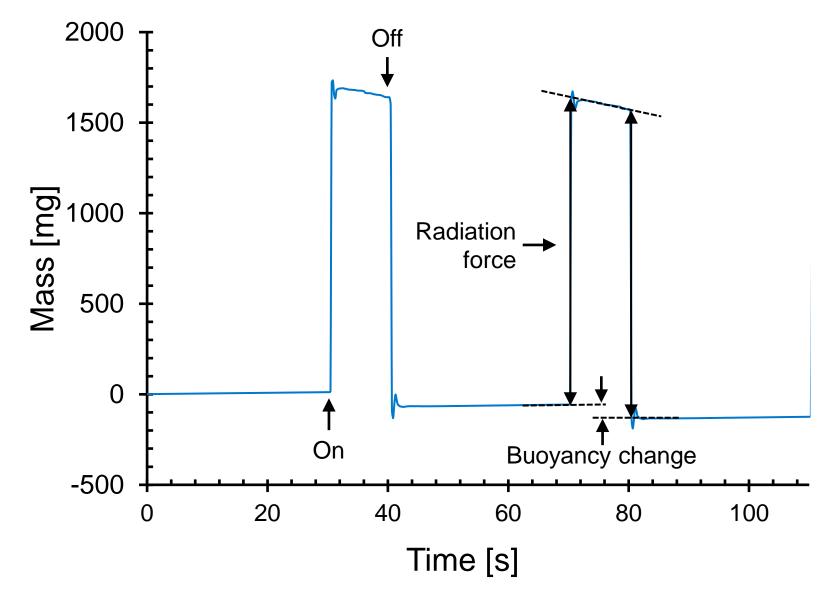

- Force \propto Power.
- Power:

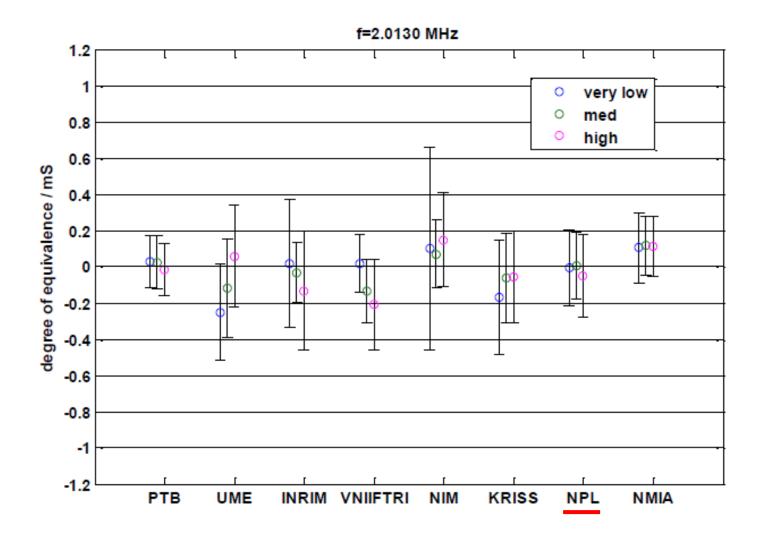
$$W = m \cdot g \cdot c(\mathbf{T})$$

- where,
 - *m* is the mass change [kg].
 - g is the gravitational acceleration [m s⁻²].
 - c(T) is the temperature dependant speed of sound [m s⁻¹].

RFB Implementations

Precision Acoustics Ltd


Onda Corporation


NPL - Buoyancy change target

NPL

RFB Typical Measurement

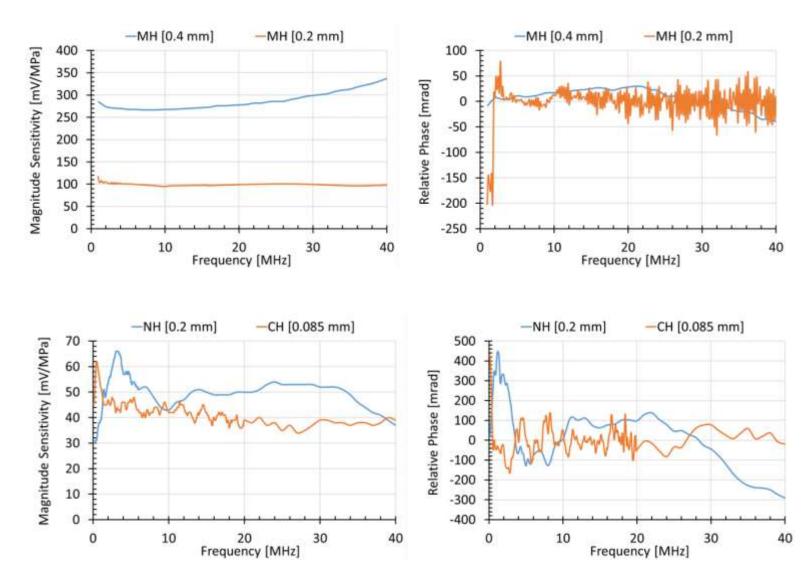
Acoustic Power – International Equivalence

NPL

Acoustic Pressure

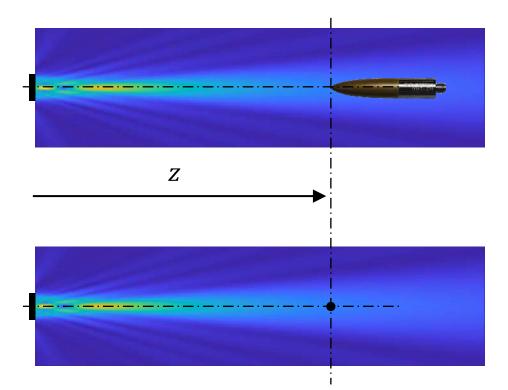
Membrane type hydrophones

Needle hydrophones

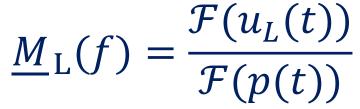

Fibre optic hydrophone

- Sensitivity: A known relationship, *M*, between the incident acoustic pressure and measured output voltage.
- Units in $V \cdot Pa^{-1}$.
- Associated uncertainty, $\pm u$.
- Example:

$$M (f = 1 \text{ MHz}) = 27 \text{ mV} \cdot \text{MPa}^{-1} \pm 6\%.$$



Hydrophone Typical Responses

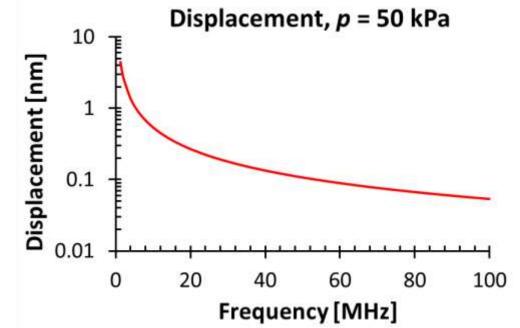


Hydrophone Sensitivity Calibration

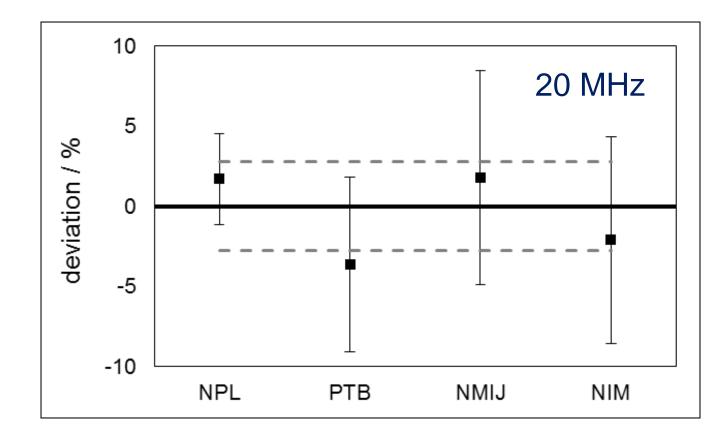
Hydrophone voltage, $u_L(t)$ in response to incident acoustic pressure

Acoustic pressure, p(t) in the absence of hydrophone

How to Quantify Pressure?



Consider the acoustic plane wave relationship:


 $p = \rho_0(T)c_0(T)\omega\xi$

where:

- p, acoustic pressure [kg · m⁻¹ · s⁻²].
- T, temperature of water [K].
- ρ_0 , ambient density of water [kg \cdot m⁻³].
- c_0 , ambient sound-speed of water [m · s⁻¹].
- $\omega = 2\pi f \text{ [rad} \cdot \text{s}^{-1} \text{]}.$
- ξ , acoustic displacement [m].

Acoustic Pressure – International Equivalence NPL

High-frequency Inter-comparison (*informal*)

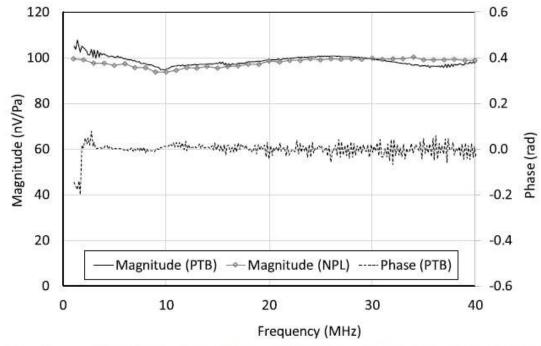
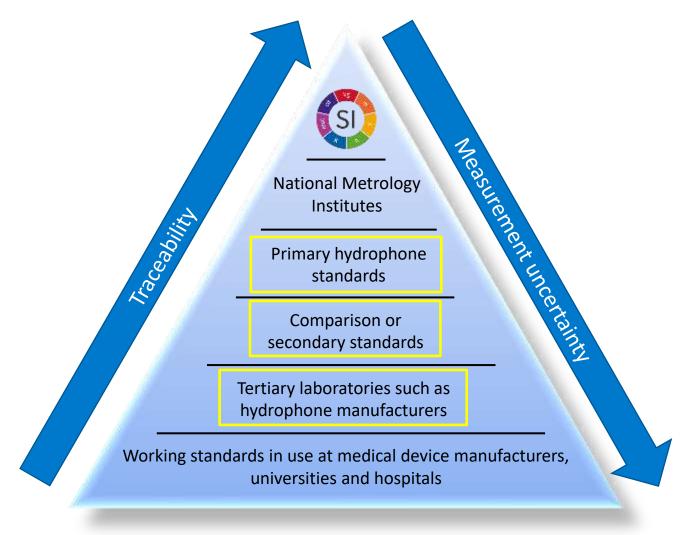


Fig. 2. Magnitude and phase calibration of the 0.2 mm-diameter, 11 μ m-thick PVDF membrane hydrophone used as a phase reference source GAMPT GmBH (Merseberg, Germany). Calibration provided by PTB (Braunschweig) and NPL (London).

IEEE TRANSACTIONS ON ULTRASONICS. FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 64, NO. 1, JANUARY 2017


The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms

Andrew M. Hurrell and Srinath Rajagopal

Traceability Pyramid

Dissemination to the User Community

Calibration Services

- Calibration services are provided to nearly all the scanner manufacturers
- Integral when seeking regulatory approval from MHRA for safety
- Periodic international comparison of measurement standards

Standards Development

- Led/contributed to calibration and equipment performance standards over three decades
- At least 10 international standards for diagnostic and therapy devices
- Current focus is on
 elastography standards

Consultancy Services

- A comprehensive range of consultancy services available for developing and testing of devices
- Supported >10 SMEs via UK-RI funded Analysis for Innovators (A4I) scheme
- Commissioned equipment to other NMIs

Sale of Artefacts and Licences

- Surface temperature test phantom is used to test compliance with the limits of transducer surface temperature specified in IEC 60601-2-37
 - NPL innovations are exclusively licensed to UK based SME, Precision Acoustics Ltd

Ultrasound Metrology

Collaborations with NHS

Joint appointment with Guy's and St Thomas' Hospital

Development of instrumented phantom for performance assessment of MR guided High-Intensity Therapy Ultrasound (MRgHIFU) system

NHS Scientist Training Programme

Supported an ultrasound workshop funded by the South East Imaging Training Academy for medical physics trainees of the NHS STP

Quality Assurance of Ultrasound Imaging Systems

A project comparing commercial ultrasound phantoms enabled to study many aspects of ultrasound QA testing at University Hospitals Sussex NHS Trust

Brighton and Sussex University Hospitals NHS Trust

Questions?