

Measurement and modelling for novel therapeutic applications of ultrasound

Rui Xu, PhD

Department of Medical Physics and Biomedical Engineering, University College London, London, UK

WHABUG

"New" therapeutic ultrasound applications

Rely on old mechanisms of action: broadly divided into thermal, mechanical, cavitational

Mechanical Shock waves

MAR BUG

Radiation Force

Bubble activity (cavitation) Shear forces Energy release

UCL Biomedical Ultrasound Group

Best-known for the k-Wave toolbox (>15 000 users, >2000 citations)

Validated for: free field, glycerol wedges

Validation underway for: Transcranial Ultrasound

Modelling propagation through fluid phantoms

Fields can be modelled accurately if we know medium properties and geometry

WHABUG

Skull propagation: model – measurement comparison

Model can predict field reasonably well given we don't have all the information

Krokhmal & Martin, in review, 2024

MAR BUG

Comparison of peak pressure in simulation and experiment

The skull introduces significant aberration increasing with frequency and well captured in simulation

ላላቶ BUG

Transcranial focused ultrasound neuromodulation

1950s - experiments with craniotomies – too invasive [1]

2002/3 – CT-based transcranial aberration corrections [2,3]

- 2013 Insightec system for non-invasive essential tremor treatment [4]
 - dose: thermometry, CEM43°C

201X – renewed interest in ultrasonic neuromodulation – challenge: exposure parameters to "dose"

Photo from: Sunnybrook Health Sciences Centre, 2022. 300th patient.

ትላት BUG

[1] Fry, Ades & Fry, Science, 1958 [2] Clement & Hynynen, Physics in Medicine & Biology, 2002 [3] Aubry et al., JASA, 2003 [4] Lipsman et al., The Lancet, 2013

Experimental validation of treatment planning pipeline

Experimental validation of k-Plan fields with skull registered in helmet to test focusing and steering coordinates

Martin et al., in review, 2024

WWA BUG

Online sonication of LGN modulates visual evoked potentials

Significant changes in activity on fMRI in V1 in each participant, no change when stimulating control region

Martin et al., in review, 2024

WWH BUG

Opportunities for focused ultrasound spinal cord neuromodulation

Small animal studies have shown:

- spontaneous discharges in ex vivo spinal cord (toad)
- increases or decreases in reflex amplitude
- increases or decreases in muscle recruitment
- increases in grasping strength
- decreases in spasticity

Xu et. al., Ultrasound in Medicine & Biology, 2024

Potential for treating movement disorders?

Motivation: advances in electrical stimulation

Rowald et al., Nature Medicine, 2022

4444 BUG

Challenge: Focusing ultrasound through the spine

Xu & O'Reilly, Physics in Medicine & Biology, (2018)

WWA BUG

Source of error: hydrophone directivity

WV/ABUG

Approach: array + image-based aberration correction

Xu & O'Reilly, IEEE Transactions on Biomedical Engineering, (2019)

WWABUG

Further challenges and opportunities in trans-spine focusing

Anisotropy

Heating

Xu et al., Physics in Medicine & Biology, 2024

WWA BUG

Challenge: spinal cord safety

Currently no human or human-scale

Xu et. al., Ultrasound in Medicine & Biology, 2024

WWH BUG

1000

 \triangleleft

100

Approach:

Rui Xu – Modelling & metrology for new ultrasound applications

WWH BUG

Human scale simulations show high variance in sonication 'efficiency'

Currently no human or human-scale experiments

Xu et al., Physics in Medicine & Biology, 2024

WWH BUG

Future work

Establish damage threshold in large animal model(s)

Establish accurate array-spine registration

Improve methods for trans-spine aberration correction – k-Wave

Ultrasonic Rewarming

Cell & organ cryopreservation is limited by slow rewarming

Ice crystal growth at higher sub-zero temperatures (-60 to -20°C) damages cells

The current gold-standard rewarming method is the 37°C water bath, but is unsuited to large volumes

Ultrasound may be suited to volumetric rewarming^[1,2]

Alginate beads and cryoprotectant solution are used to improve cell cryopreservation.

ትላት BUG

[1] Xu, Treeby, & Martin, JASA, 2023 [2] Alcalá et al., Scientific Reports, 2023

Ultrasonic cryovial rewarming

WW BUG

Acoustic characterisation with FOH

Xu et al., in preparation, 2024

WWH BUG

Ultrasound accelerates rewarming

Solution

Free-field mean axial pressures and time-averaged intensities: 0 W - 0 MPa, 0 W/cm^2

 $20 \text{ W} - 1.5 \text{ MPa}, 75 \text{ W/cm}^2$ $40 \text{ W} - 2.0 \text{ MPa}, 133 \text{ W/cm}^2$

60 W – 2.4 MPa, 192 W/cm² 100 W – 2.8 MPa, 260 W/cm²

Beware the thermocouple viscous heating artifact

Xu et al., Proceedings of IEEE-JS, 2024

WWA BUG

Freezing rate affects ultrasonic rewarming rate

Rui Xu – Modelling & metrology for new ultrasound applications

WWH BUG

Alginate-encapsulated liver spheroid viability

Rewarming at 20 W: 36% increase in rewarming rate over the gold standard 37°C water bath Rewarming at 100 W: 360% increase in rewarming rate

Xu et al., in preparation, 2024

WHABUG

Ultrasound improves rewarming rate and maintains cell number

Further optimization of ultrasonic rewarming protocols may broadly improve cryovial rewarming

Xu et al., in preparation, 2024

WWA BUG

Future work in ultrasonic rewarming

Return to simulation roots

Requires accurate characterisation of temperature-dependence of acoustic and thermal properties

Array development for large-volume rewarming

Xu, Treeby & Martin, JASA, 2023

WHABUG

Conclusions

Simulations are a useful tool throughout the development & implementation of ultrasound applications

Careful metrological validation is needed for confidence in simulations

Plenty of 'new' applications and approaches

Acknowledgements

k-Wave validation for trans-skull ultrasound: Alisa Krokhmal, **Eleanor Martin**

Focused ultrasound neuromodulation: **Eleanor Martin**, Morgan Roberts, Ioana F Grigoras, Olivia Wright, Tulika Nandi, Sebastian W Rieger, Jon Campbell, Tim den Boer, Ben T Cox, Charlotte J Stagg & Bradley E Treeby

Trans-spine ultrasound: David Martin, **Meaghan A O'Reilly**, Bradley E Treeby, **Eleanor Martin**

Ultrasonic Rewarming: Thomas Brookshaw, Eloy Erro, Morgan Roberts, Clare Selden, **Eleanor Martin**

4444 BUG