Adaptive focusing for deep brain ultrasound stimulation:
application to psychiatric disorders
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= js a member of FUSMobile’s scientific advisory board and holds
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Production of Reversible
Changes in the Central
Nervous System by Ulerasound

For the past several years an intensive
research etfort has been in progress at the
Bioacoustics Laboratory of the University
of Wlinois on the production of selective
lesions in the tissucs of the central nerv-
ons system by high inteasity nltrasound
(7). Considerable information has been
obtained concerming the dosage condi-
tions requiredt for the praduction of such
lcsiuus, and neuroanatomical studies uti-
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Fig. 1. Camm. potentials evoked Ly a
ﬁash of light (left) before irvadiation,
{middle) at the termination of ireadia-
tion, {right] 30 minuiws aftor irvadiation.

lizing this technique are now in progress.
Relatively recent electrophysiological in-
vestigations indicate that vevereible sup-
pression of transmission along neural
pathways can be accomplished by apply-
ing a controlled dosage of uitrasonic
sadiation at various sites along these
pathways {2). By imadiating with ultra-
sound in the lateral geniculate nuclens
it is possible to suppress temporarily the
potential nsually evoked in the visual
cortex in vesponse to 2 light stimulus, It
should be noted thar this effect is pro-
duced by a dosage of ultrasound which
does not cause any histologically obisery-
able lesion in the tissue, This ultrasonic
technique of producing reversible chunges
offers unmique opportumities for three-
dimensional mapping of central nervous
gystem function,

Bipolar recording  electodes  are
placed in the apprepriate cortical areas
on both hemispheres to detect the evoked
potentials, The focused ultrasonic beam
source is used to irradiate the region of
one of the lateral geniculate nuclei of

the animal {cat) since these nucled are
<ites of synaptic stations aleng the viseal
pathway. The vlirasonic energy must be
u.u)mul'od fram (}'r lrrndnrnr 1o !he'

md "m intervening skull bone must be
semoved.

- yemy :
peated at fixed time inrervals before,
during, and after ultzasonic ircadiation,
and contiruows electyical recording s in
progress during the course of the experi-
ment. A series of duee light fashes, with
approximarely 3 seconds berween fashes,
is used ta stimulate the eye of the ani-
mal. This setics of flashes is repeated at
variable intervals of time before, during,
and after exposure o the ultragonic radi-
ation. The focus of the sound beam i
placed successively in and around the
region of the lateral geniculate nucleus.
With a sultably choaen zound level and
with an exposure time in the range from
20 1o 120 seconds, it has been pessible to
produce reversisle suppressions of vari-
ous components of the elicited electrical
response in the viseal cortex. The type
of result ilusteated in Fig. { has been ob-

rained in a nomber of animals, Figure |
shows the cortical patentials [two clec-
todes) evoked by a flash of lighe {i)
before ultrasonic irradiation, (i) at the
termination of the ultrasanic exposure
period, and [iii) subsoquent to irradia-
tion, At the termination of the ultra-
sonic irradiation period the amplimde
of the primary responsce [upper record )
was reduced to less than one.thicd of its
original value. The amplitude of the sec-
ondary response {upper record] was ve-
duced o practically zero. Complete re-
covery of the primary and secondary
response was apparent 30 minutes after
‘EXpOsuTe,

Experiments are in progress w0 guan-
Tify further the conditions for producing
controlled reversibility and 0 determine
the site or sites (synapses, axons, cell
‘bodies) of action of the sound (2).

T.]. Fuy
Bivacoustics Laboratory *
Uniwernity of Iinois, Usbana

Ofer wine Back to the 1950s: ultrasound neurostimulation emerges (reduction of evoked potentials)

« intervening skull must be removed »

IFry, Ades & Fry, Science, 1958|

No skull: With skull :
Good focusing defocusing
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Title
Transcranial Focused Ultrasound Modulates Intrinsic and Evoked EEG Dynamics
Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex
Transcranial focused ultrasound stimulation of human primary visual cortex

Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused

ultrasound
Transcranial focused ultrasound for BOLD fMRI signal modulation in humans
Transcranial focused ultrasound neuromodulation of the human primary motor cortex
Neuromodulation with single-element transcranial focused ultrasound in human thalamus
Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study
Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked

Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in
Humans
Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in
healthy adults: A double-blind, sham-controlled study
Response inhibition is driven by top-down network mechanisms and enhanced with focused ultrasound
Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior

Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-related Cortical Activity in Humans
Real time and delayed effects of subcortical low intensity focused ultrasound
Transcranial Focused Ultrasound Enhances Sensory Discrimination Capability through Somatosensory Cortical
Excitation
Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man
Report
Focused Ultrasound Platform for Investigating Therapeutic Neuromodulation Across the Human Hippocampus
A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among
depressed participants
Ultrasonic thalamic stimulation in chronic disorders of consciousness
Safety of Focused Ultrasound Neuromodulation in Humans with Temporal Lobe Epilepsy

(2 | Many TUS studies on humans
.\\ - Medicine
\, PARIS
Authors Study Number Year
Mueller et al. 1 2014
Legon et al. 2 2014
Lee et al. 3 2015
Lee et al. 4 2016
Lee et al. 5 2016
Ai et al. 6 2016
Legon et al 7 2018
Legon et al. 8 2018
Ai et al. 9 2018
Braun et al. 10 2020
Sanguinetti et al. 11 2020
Badran et al. 12 2020
Fine et al, 13 2020
Fomenko et al. 14 2020
Yu et al. 15 2020
Cain et al 16 2021
Liu et al. 17 2021
Monti et al. 18 2016
Brinker et al. 19 2020
Reznik et al. 20 2020
Cain et al. 21 2021
4 Stern et al. 22 2020
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Transducer
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Hand pad

Credit: M. Monti

.
measuring
sensory, pain, and
tolerance thresholds
to a thermal stimulus
applied to the left
forearm

5 Badran et al., Brain Stimulation (2020)

650kHz neurostimulation (right anterior thalamus)

Change in Thermal Detection Thresholds
(Post-Pre LIFUP)

B LIFUP Sham
B LIFUP Active

Detection Threshold (°C)
o

-2 | | |
Sensory Pain Tolerance

0.57°C increase In the

thermal pain threshold

(1.3% compared to the
45.3°C threshold)
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Authors Study Number Year
Mueller et al. 1 2014
Legon et al. 2 2014
Lee et al. 3 2015
Lee et al. 4 2016
Lee et al. 5 2016
Ai et al. 6 2016
Legon et al 7 2018
Legon et al. 8 2018
Ai et al. 9 2018
Braun et al. 10 2020
Sanguinetti et al. 11 2020
Badran et al. 12 2020
Fine et al, 13 2020
Fomenko et al. 14 2020
Yu et al. 15 2020
Cain et al 16 2021
Liu et al. 17 2021
Monti et al. 18 2016
Brinker et al. 19 2020
Reznik et al. 20 2020
Cain et al. 21 2021
6 Stern et al. 22 2020

Title
Transcranial Focused Ultrasound Modulates Intrinsic and Evoked EEG Dynamics
Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
Image-Guided Transcranial Focused Ultrasound Stimulates Human Primary Somatosensory Cortex
Transcranial focused ultrasound stimulation of human primary visual cortex

Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused

ultrasound
Transcranial focused ultrasound for BOLD fMRI signal modulation in humans
Transcranial focused ultrasound neuromodulation of the human primary motor cortex
Neuromodulation with single-element transcranial focused ultrasound in human thalamus
Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study
Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked

Transcranial Focused Ultrasound to the Right Prefrontal Cortex Improves Mood and Alters Functional Connectivity in
Humans
Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in
healthy adults: A double-blind, sham-controlled study
Response inhibition is driven by top-down network mechanisms and enhanced with focused ultrasound
Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior

Transcranial Focused Ultrasound Neuromodulation of Voluntary Movement-related Cortical Activity in Humans
Real time and delayed effects of subcortical low intensity focused ultrasound
Transcranial Focused Ultrasound Enhances Sensory Discrimination Capability through Somatosensory Cortical
Excitation
Non-Invasive Ultrasonic Thalamic Stimulation in Disorders of Consciousness after Severe Brain Injury: A First-in-Man
Report
Focused Ultrasound Platform for Investigating Therapeutic Neuromodulation Across the Human Hippocampus
A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among
depressed participants
Ultrasonic thalamic stimulation in chronic disorders of consciousness
Safety of Focused Ultrasound Neuromodulation in Humans with Temporal Lobe Epilepsy
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Impact of the skull on the precision of the targeting

TARGET ENGAGEMENT | STUDYH AUT"OR:,YEAR” TUS TARGET ] l No Correction l

(at least one point of the
50% isodose hits the target)

1 2 3 4 5 6 7 8

1 Monti, 2016 Right Thal. 00000000
....... 2A|'2016Left(:audate . . o o o o . o
....... gl e s 0000000
"""" a  Badran,2020 RightThk. @ OO0O000®O
....... 5Brmker2020|_eﬂ|_|pc ‘ o ‘ o ° o ‘ o
....... o ©@000000Q0Q
~~~~~~ 7 eorg 200t w0 0000000
...... R L e 00000000
...... e Q00Q@000Q0
...... 235 g 9O@00O00O0
...... = 4|_eftAngrus . . . . o . . .
"""" 5 stem2021 Lt @ O0000000

10 Cain, 2021 (2) Left Thal. 0000000

TOTAL 53/104 (51%)

5.1 mm (+ 3.6mm)
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Challenge #1: focusing ultrasound waves through human skulls
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CT Scan

I 1300
Hounsfield
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Acoustical properties of the skull

/ ! \

Speed of sound Density Absorption
: qradp(r,t)J 1 0%p(r,t) _
r)di - =0
o) { Py ) e*(r) otf

Aubry JF et al, “Experimental demonstration of non invasive transskull adaptive focusing based on prior CT scans’,
Journal of the Acoustical Society of America, 113 (1), pp 84-94, 2003.

Clement GT and Hynynen K: A non-invasive method for focusing ultrasound through the human skull.
10 Phys Med Biol 47:1219-1236, 2002.
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With aberration correction

* Focal spot: 1.5mm diameter
* Focused with submillimeter accuracy

Without correction With correction

Kyriakou A et al. "A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused

ultrasound."” International journal of hyperthermia (2014)
Bancel T et al. "Comparison between ray-tracing and full-wave simulation for transcranial ultrasound focusing on a clinical system using the transfer

11 matrix formalism." IEEE transactions on ultrasonics, ferroelectrics, and frequency control (2021)
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12 Treatment at la Pitié Salpétriere hospital, Paris, France
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Treatment of Essential Tremor by thermal ablation with focused ultrasound

13 Treatment at la Pitié Salpétriere hospital, Paris, France
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Tremor assessment during treatment

Neurologist
asks the patient to start holding
the posture

MR magnet

3

Patient
starts holding the posture

ey &

Insightec

S AN > e, _;‘ ¢
" transducer -

—

w

Accelerometers are
taped on the patient’s hand

-\

Neurosurgeon

E a / - Presses “start sonication”
> (30s delay)
2 s In5|ghtec.
2 10 Workstation >
<
40 60 80 100 » ;
Time (s) = “

Raw data
treated hand
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Tremor power [4 12]Hz (UA)
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0.04

0.02

t\\! Eégicine Effect of high intensity focused ultrasound

Acoustic Energy : 20 000 J

k%

*kk

Patient 4
| 0 | |
CEM: 39.4 CEM: 6138.5 CEM: 3601.0 CEM: 7.9 CEM: 502.6
| Shift: 0.0mm Shift: 0.0mm Shift: 1.0mm Shift: 1.0mm Shift: 1.0mm
Max T: 51.1 °C Max T: 59.5 °C Max T: 58.4 °C Max T: 49.8 °C Max T: 55.1 °C

I Beginning of sonication (+/- 3 s)
I End of sonication(+/- 3 s)

Son. 1 Son. 2 Son. 3 Son. 4 Son. 5

More than 90% reduction in tremor power
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Neuromodulation in the thalamus with Exablate Neuro

Acoustic Energy : 8 J

16
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Neuromodulation in the thalamus with Exablate Neuro

Acoustic Energy : 8 J

T. Bancel et al.

d

[ IBaseline

[ Post-neuromodulation monitoring

w
o
T

w
I
—

96%0 reduction in tremor power
for 30min

N
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-
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T

Tremor power [2 20]Hz (AU)
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—
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Bancel et al, Sustained reduction of essential tremor with low-power non-thermal transcranial focused ultrasound stimulations
17 in humans, Brain Stimulation 2024
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Treatment of Essential Tremor by thermal ablation with focused ultrasound

18 Treatment at la Pitié Salpétriere hospital, Paris, France
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Tremor power [2 20]JHz [AU)
== [ X]

0.5
o =] o
Son. 1 Son. 2 Son. 3 Son. 4 Son. 5 3 minutes 32 minutes
2.8 Wicm? 2.6 Wicm? 0.05 Wicm® 0.4 Wicm® 0.4 Wiem® after first after first
12:08 12:10 12:13 12:16 12:18 DRT burst DRT burst

0O
|

B v

w

N

26 minutes
after first
DRT burst

Tremor power [2 20]Hz (AU)

o

Son. 1 Son. 2 Son. 3 Son. 4 26 minutes
2.8 W/em? 0.8 Wicm? 2.6 Wicm? 0.4 W/cm? 0.4 Wicm? after first
11:45 11:51 11:55 11:58 12:01 DRT burst

Bancel et al, Sustained reduction of essential tremor with low-power non-thermal transcranial focused ultrasound stimulations
19 in humans, Brain Stimulation 2024
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Neuromodulation in the Nuc Accumbens with Exablate Neuro EAVAUIEES G EI=s
Neurosciencelnstitute

Mahoney, James J., et al. "Low-intensity focused ultrasound targeting the nucleus
accumbens as a potential treatment for substance use disorder: safety and feasibility
clinical trial." Frontiers in Psychiatry 14 (2023): 1211566.

COPENHAGEN |

AQUAVIT -
DILL AWSR | AICOhOI

Cocaine

20
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Neuromodulation in the Nuc Accumbens with Exablate Neuro EAVAUIEES G EI=s
Neurosciencelnstitute

Mahoney, James J., et al. "Low-intensity focused ultrasound targeting the nucleus
accumbens as a potential treatment for substance use disorder: safety and feasibility
clinical trial." Frontiers in Psychiatry 14 (2023): 1211566.

Subject #3 — Within Sonication Craving Ratings (Sham vs. Active LIFU)

-#-Heroin

60
~-a~Alcohol

—+—Benzodiazepines

Most Craving Ever)
o w
(=] o

Visual Analog Scale

(0 = No Craving, 100

:

20
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Sham Sonication
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Neuromodulation in the Nuc Accumbens with Exablate Neuro EAVAUIEES G EI=s
Neurosciencelnstitute

Mahoney, James J., et al. "Low-intensity focused ultrasound targeting the nucleus
accumbens as a potential treatment for substance use disorder: safety and feasibility
clinical trial." Frontiers in Psychiatry 14 (2023): 1211566.

Subject #3 — Within Sonication Craving Ratings (Sham vs. Active LIFU)

60 -#-Heroin ~@-Heroin
~-a~Alcohol ~e~-Alcohol
E)‘a -+-Benzodiazepines -+~Benzodiazepines
@ 50
ab
£
® . N
0 -~
- O
8 o 40
» 8
s
]
30
&8 7
-—
~ -
S o
2 £
> E 20
o
o " ' T
Z
" 10
=]
0
& o %) & o O\ <
& <F & & & & & & &
P & & ol & & ™ N o~
& A &* & o St o R o
& N & & & ° & ol Sl
,(\"b & &) é _(\V" _(\V V‘g V‘L
& & v ¢ S o o
9 &€ c—,& Q& & &
<° o Qo‘, > ;.\’\
Q ® ® ©
Sham Sonication Active Sonication |

*Additional VAS assessment completed during 5-minute pause in sonication
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Neuromodulation in the Nuc Accumbens with Exablate Neuro EAVAUIEES G EI=s
Neurosciencelnstitute

Mahoney, James J., et al. "Low-intensity focused ultrasound targeting the nucleus
accumbens as a potential treatment for substance use disorder: safety and feasibility
clinical trial." Frontiers in Psychiatry 14 (2023): 1211566.

Subject #4 — Within Sonication Craving Ratings (Sham vs. Active LIFU)

60 -8~ Opioids
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o0
c
>
o B
= O 40
‘X 7
| w0 S
\ o
G ‘ ™
COPENHAGEN | g 8 30
ENHA <9
AQUAVIT - S @
DRLL AWSE | AICOhOI ; g
| @ 20
‘ 5
o
=
| é 10 P @
-
| 0
| e = v & o () & o &
& o < & & o ol <
Q’b"’ P o %‘S” & o~ & &
& P &® & A\ N &® &®
. k. o
Cocaine & 5 & & & & ® &
S & 9 & s oF Aad
S 3 & ¥ S & &
g N & & &
o) & o o &
& R & < i 3
] Q© Q© Qo‘o Qo‘a 0"(
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L Decreasing the number of elements from 1024 to 256

Riis, T., Feldman, D., Losser,
A., Mickey, B., & Kubanek, J.
(2023). Device for multifocal
delivery of ultrasound into deep
brain regions in humans. IEEE

TBME
B . Active
- I Sham .
- L L
A °f
0 e
Vignon F, Aubry J-F, Tanter M, Margoum A, & Fink, M (2006). g 1o
Adaptive focusing for transcranial ultrasound imaging using dual %_2_ 5 4l e
arrays. The Journal of the Acoustical Society of America © o °
5 85t o
E _4. @0 - L] L ]
S ¢ 8
W % e @@ .
E 61 T-10} .
BD: 12 )
- o ]
T ol .
141 . .
' 0o 1 7
0 1 ! Days Post Treatment

Days Post Treatment
Riis, T., et al. "Noninvasive modulation of subcallosal cingulate and depression with

25 focused ultrasonic waves." Biological Psychiatry (2024).
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/ Single-element transducer \

Single element transcranial
Focused Ultrasound
without correction

/ 1024-elements transducer \

/ Single-element transducer \

Multielement Transcranial
Focused Ultrasound
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/Single-elementtransducer\ / 1024—elementstransducer\ /Single-elementtransducer\

acoustic
lens

Single element transcranial
Focused Ultrasound

Transcranial Focused

Multielement Transcranial
Focused Ultrasound Ultrasound with acoustic lens

without correction Aubry et al, WO 2017001781 Patent, July 2015

Maimbourg et al, 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-
element transducers, Physics in Medicine & Biology 2018

27 Maimbourg et al, Steering capabilities of an acoustic lens for transcranial therapy, IEEE TBME 2019




Technological breakthrough: towards low cost transcranial focusing

aberrated corrected

normalized acoustic intensity

6 420 2 4 6 6 4 -20 2 46

« sl \

single-element with a 61mm radius
of curvature and a 67mm aperture
(H101 MR, Sonic Concepts, USA)
operated at 914kHz.

\ J

Maimbourg et al, 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-
element transducers, Physics in Medicine & Biology 2018

28 Maimbourg et al, Steering capabilities of an acoustic lens for transcranial therapy, IEEE TBME 2019
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Technological breakthrough: towards low cost transcranial focusing

aberrated corrected

y [mm]
AN ON SO

0.6

normalized acoustic intensity

z [mm]
ON B~ O

1
BN

>

6 420 2 4 6 6 4 -20 2 46
X [mm] X [mm]

skull A skull B skull C mean * std
aberrated | 1.2W/cm’ 1.3W/cm’ 1.3W/em® | 1.3+0.1W/cm’
corrected |  18W/cm? 12W/cm’ 9.2W/cm’ 13 +4.5W/cm?

Maimbourg et al, 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-
element transducers, Physics in Medicine & Biology 2018

29 Maimbourg et al, Steering capabilities of an acoustic lens for transcranial therapy, IEEE TBME 2019
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Impact of the lens on the precision of the targeting

TARGET ENGAGEMENT | STUDYH AUT"OR:,YEAR” TUS TARGET ] l No Correction l

(at least one point of the
50% isodose hits the target)

1 2 3 4 5 6 7 8

1 Monti, 2016 Right Thal. 00000000
....... 2A|'2016Left(:audate . . o o o o . o
....... gl e s 0000000
"""" a  Badran,2020 RightThk. @ OO0O000®O
....... 5Brmker2020|_eﬂ|_|pc ‘ o ‘ o ° o ‘ o
....... o ©@000000Q0Q
~~~~~~ 7 eorg 200t w0 0000000
...... R L e 00000000
...... e Q00Q@000Q0
...... 235 g 9O@00O00O0
...... = 4|_eftAngrus . . . . o . . .
"""" 5 stem2021 Lt @ O0000000

10 Cain, 2021 (2) Left Thal. 0000000

TOTAL 53/104 (51%)

5.1 mm (+ 3.6mm)
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TARGET ENGAGEMENT | STUDY|| AUTHOR, YEAR| TUS TARGET | l No Correction l it cor;eaiolf'l I

(at least one point of the

50% isodose hits the target) ] ) = L 2 8 4 3 8 7 =
1 Monti, 2016 Right Thal. Q0000000 000COCOOO
....... s A 1 066060066
....... 3 legon2os Tl Q0000000 00000000
4 Badran, 2020 Right Thal ' o o o o o . o . . . . . . . ‘
....... s i e S 60006066 6
....... st [ 6000066066
....... 7 Jeorg2o  rghtiee Q0000000 00000000
8.1 Lee, 2022 etPMeyrus D 0 0 0 0000 00000000
______ s2  eitic 90000000 ©000QOOCOQ
...... 83 ~~ rgntmsia QO0000000 00000000
...... ga  tefiacgyns D OO000000 00000000
9  Stern,2021 Left HPC Q0000000 ©0000COCOCOO
10  Cain, 2021 (2) Left Thal Q0000000 0000COCOOCO

TOTAL 53/104 (51%) TOTAL 104/104 (100%) |

TARGETING ERROR BETWEEN INITIAL TARGET :
AND MAXIMUM PRESSURE LOCATION 5.1 mm (+ 3.6mm) Vs 1.5 mm (£ 1.7mm)

Comparison with measurements: ) . )
31 Gimeno et al. (2019) IEEE IUS: 4.4 mm (+ 3.2mm) without correction Unpublished Result, Manuscript under preparation.
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Neuronavigated, lens-based aberration correction for precise deep brain stimulation

Electromagnetic compatibility and electrical safety

SonoMind

Y
p

Certified by a notified body:
LCIE Bureau Veritas

Shaping a World of Trust

- electrostatic discharge %
- RF electromagnetic fields

32
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Neuronavigated, lens-based aberration correction for precise deep brain stimulation

Mechanical safety

==> Mechanical Index < 1.9

(associated with the absence of mechanical risks
according to standards for ultrasound imaging)
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Neuronavigated, lens-based aberration correction for precise deep brain stimulation

Thermal safety

Calibrated measurements in free water
==> Cranial Thermal Index < 2

SonoMind

-

Measurements on 5 ex vivo skulls

==> Thermal Rise < 2°C
(safe according to standards for MRI and implantable
devices)

5x human skull 5
metalens ~
clinical TUS |

prototype
brain TMM A

skin phantom A

11x calibrated
thermocouple

Pl
N

o
@

M

N \M
&WWMM' N

! ‘
0 200 400 600 800

34 _
Time (s)

e
IS

Temperature rise (°C)

o
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medRxiv preprint doi: hitps:/fdoi.org/10.1101/2024.08 12 24313472; this version posted September 12, 2024. The copyright holder for this
preprint {(which was not cerfified by peer review) is the authorffunder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Thermal safety

Low-intensity focused ultrasound stimulation in stroke: An intensity escalation phase |

ou: Calibrated measurements in free water
safety and feasibility study

==> Cranial Thermal Index < 2
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Neuronavigated, lens-based aberration correction for precise deep brain stimulation

SonoMind

On going clinical trial
on drug resistant depression
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in humans, Brain Stimulation 2024
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Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier

Bonus: BBB opening and neuromodulation
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Constans, C. et al Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the
a0 Dblood brain barrier. Journal of Controlled Release, 318, 223-231.
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Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier

Bonus: BBB opening and neuromodulation
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Constans, C. et al Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the
41 blood brain barrier. Journal of Controlled Release, 318, 223-231.
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Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the blood brain barrier

Bonus: BBB opening and neuromodulation
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Constans, C. et al Non-invasive ultrasonic modulation of visual evoked response by GABA delivery through the
4>  blood brain barrier. Journal of Controlled Release, 318, 223-231.
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Pouget et al, Neuronavigated Repetitive Transcranial Ultrasound Stimulation induces long-lasting and reversible effects on

44 oculomotor performance in non-human primates.” Frontiers in Physiology 11 (2020).
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