

Preventing Term Stillbirth: Importance of Fetal Weight and Doppler

Conflict of interests: none

Beginning and end

Early pregnancy screening

- How the current screening system causes harm
- Implementation of better screening strategies

Management at term

- How we assess fetal growth
- Clinical importance of fetal weight/growth
- Does Doppler assessment have a role to play?

Current risk assessment

St George's University of London

Risk factors for pre-eclampsia

Moderate

- First pregnancy
- Age ≥40 years
- Pregnancy interval >10 years
- Body mass index ≥35 kg/m² at first visit
- Family history of pre-eclampsia
- Multi-fetal pregnancy

High

- Hypertensive disease during previous pregnancy
- Chronic kidney disease
- Autoimmune disease such as systemic lupus erythematosus or antiphospholipid syndrome
- Type 1 or type 2 diabetes
- Chronic hypertension

□ Sensitivity 40%, FPR 18%

- Risk factors not equivalent
- Thresholds for continuous variables
- $_{\odot}$ Interaction of risk factors ignored
- Deprivation/ethnicity excluded

□ <u>No numerical risk provided</u>

Rolnik D.L., et al., NEJM. 2017

Screening for preeclampsia

- Multicenter, double-blind, placebocontrolled trial
- 1776 women with singleton pregnancies at high risk for preterm PE

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

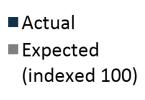
AUGUST 17, 2017

VOL. 377 NO. 7

Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia

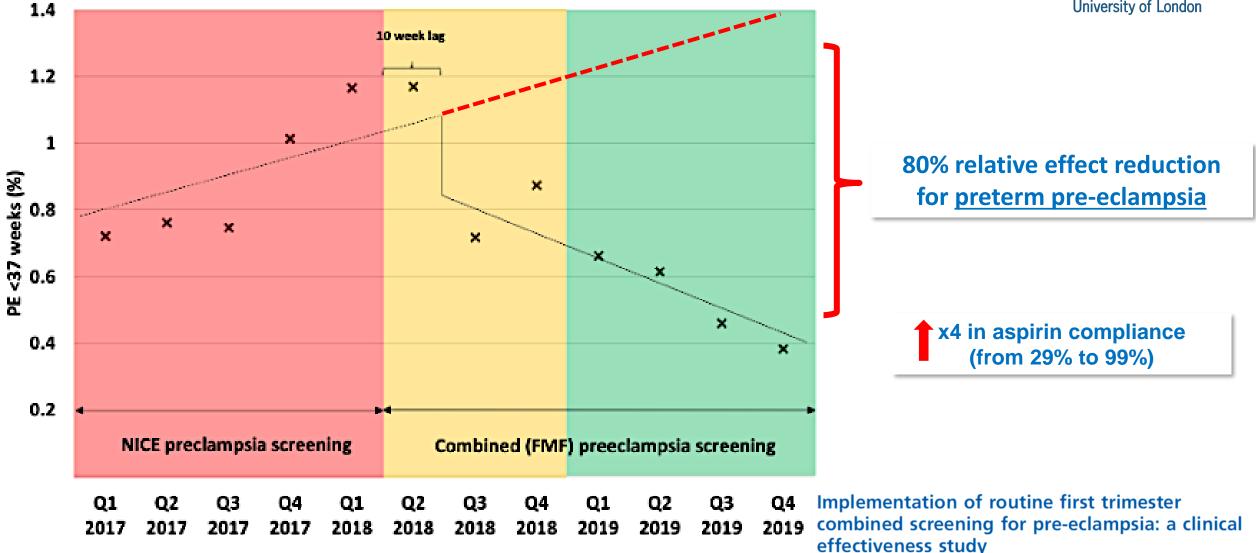
 Daniel L. Rolnik, M.D., David Wright, Ph.D., Liona C. Poon, M.D., Neil O'Gorman, M.D., Argyro Syngelaki, Ph.D., Catalina de Paco Matallana, M.D., Ranjit Akolekar, M.D., Simona Cicero, M.D., Deepa Janga, M.D., Mandeep Singh, M.D., Francisca S. Molina, M.D., Nicola Persico, M.D., Jacques C. Jani, M.D.,
 Walter Plasencia, M.D., George Papaioannou, M.D., Kinneret Tenenbaum-Gavish, M.D., Hamutal Meiri, Ph.D., Sveinbjorn Gizurarson, Ph.D., Kate Maclagan, Ph.D., and Kypros H. Nicolaides, M.D. Preclampsia prevention rate (%) -82% -62% -5% 95%

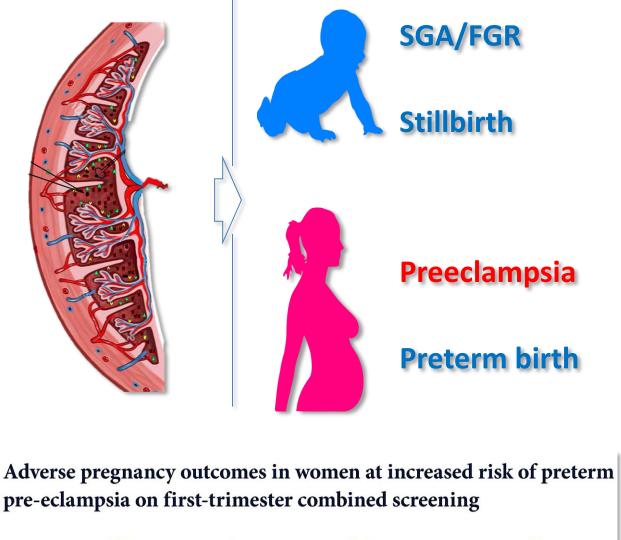
38%

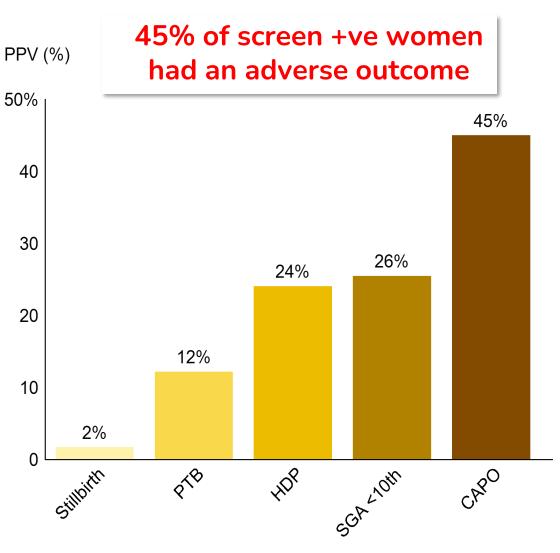

<37 wks

18%

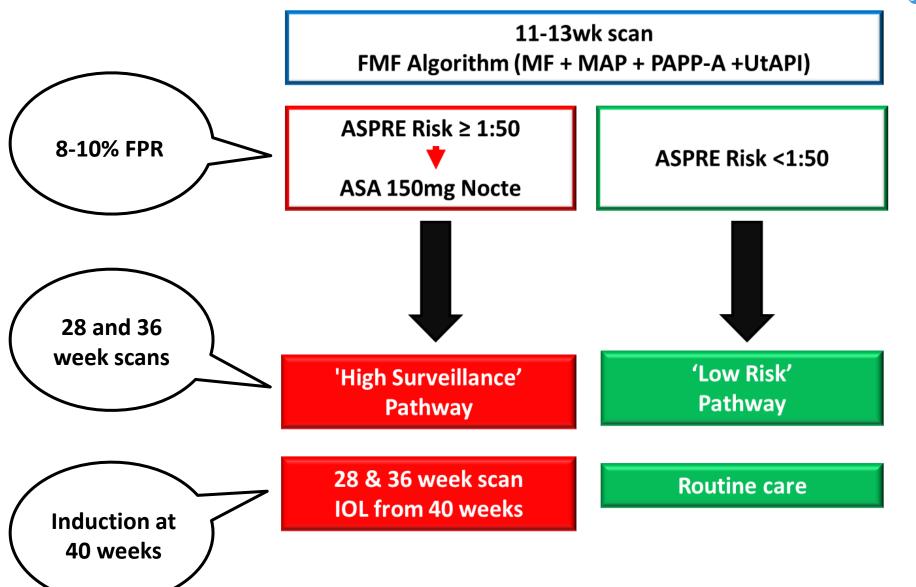
<34 wks


≥ 37 wks

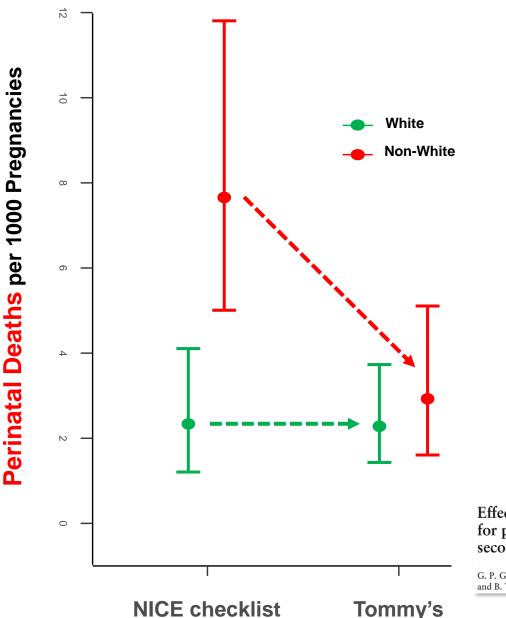

Effectiveness of FMF screening


GP Guy,^{a,b} 🕞 K Leslie,^{a,c} D Diaz Gomez,^a K Forenc,^a 🕞 E Buck,^a A Khalil,^{a,b} 🕞 B Thilaganathan^{a,b,d} 🜔

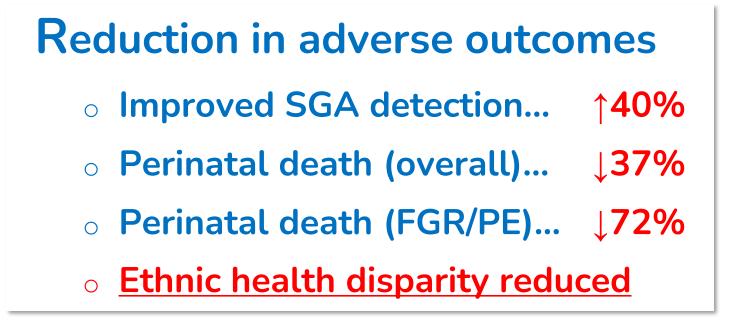
Placental dysfunction



Monica Minopoli^{1,2} | Laure Noël³ | Anna Meroni^{1,4} | Margaret Mascherpa^{1,5} | Alex Frick¹ | Basky Thilaganathan^{1,6}



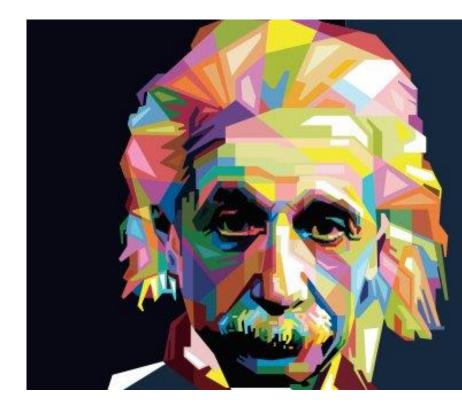
Care pathway



St George's University of London

Pregnancy outcomes

Effect of routine first-trimester combined screening for pre-eclampsia on small-for-gestational-age birth: secondary interrupted time series analysis


G. P. GUY^{1,2}, K. LESLIE^{1,3}, D. DIAZ GOMEZ¹, K. FORENC¹, E. BUCK¹, A. BHIDE^{1,2} and B. THILAGANATHAN^{1,2,4}

Reducing health inequality in Black, Asian and other minority ethnic pregnant women: impact of first trimester combined screening for placental dysfunction on perinatal mortality

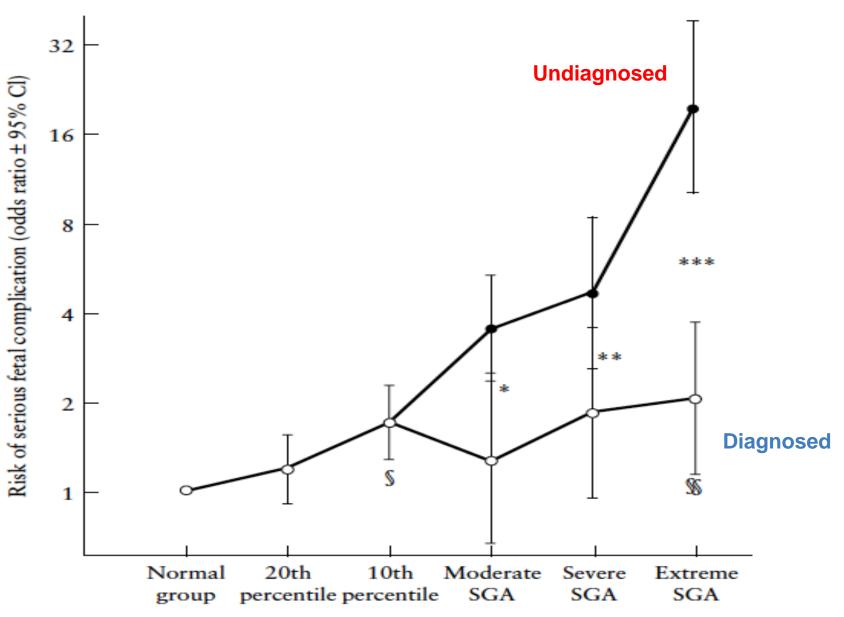
Becky Liu^{1,2} ◎ | Usaama Nadeem² | Alexander Frick^{1,2} | Morakinyo Alakaloko¹ Amar Bhide^{1,2} | Basky Thilaganathan^{1,2,3} ◎

The continued use of maternal risk-factor based screening for placental disorders in routine healthcare settings <u>MUST</u> be re-evaluated

"The definition of insanity is doing the same thing over and over again-but expecting different results."

Beginning and end

Early pregnancy screening


- How the current screening system causes harm
- Implementation of better screening strategies

Management at term

- How we assess fetal growth
- Clinical importance of fetal weight/growth
- Does Doppler assessment have a role to play?

St George's University of London

Birth weight and mortality

Lindqvist PG et al. UOG 2005

WHEN IS THE BEST TIME TO SCAN IN THE 3RD TRIMESTER?

When to perform the scan?

Ultrasound screening for fetal growth restriction at 36 vs 32 weeks' gestation: a randomized trial (ROUTE)

E. ROMA*, A. ARNAU†, R. BERDALA*, C. BERGOS*, J. MONTESINOS† and F. FIGUERAS‡

RCT - 32 vs 36wk scan 2856 women Outcome: SGA detection

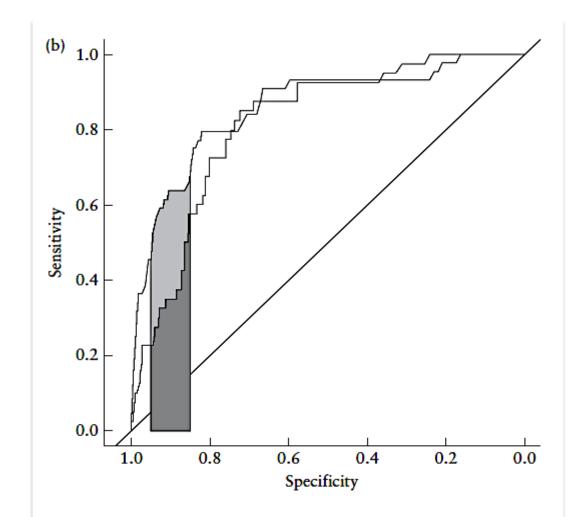


Figure 2 Areas under the receiver-operating characteristics curve for ultrasound examinations at 32 (\square) and 36 (\square) weeks' gestation for prediction of fetal growth restriction (a) and severe fetal growth restriction (b). Shaded area indicates a 5–15% range of falsepositive rate.

WHAT IS THE BEST WAY TO ESTIMATE FETAL SIZE?

Accurate estimation of fetal weight

• Use HC, AC, FL

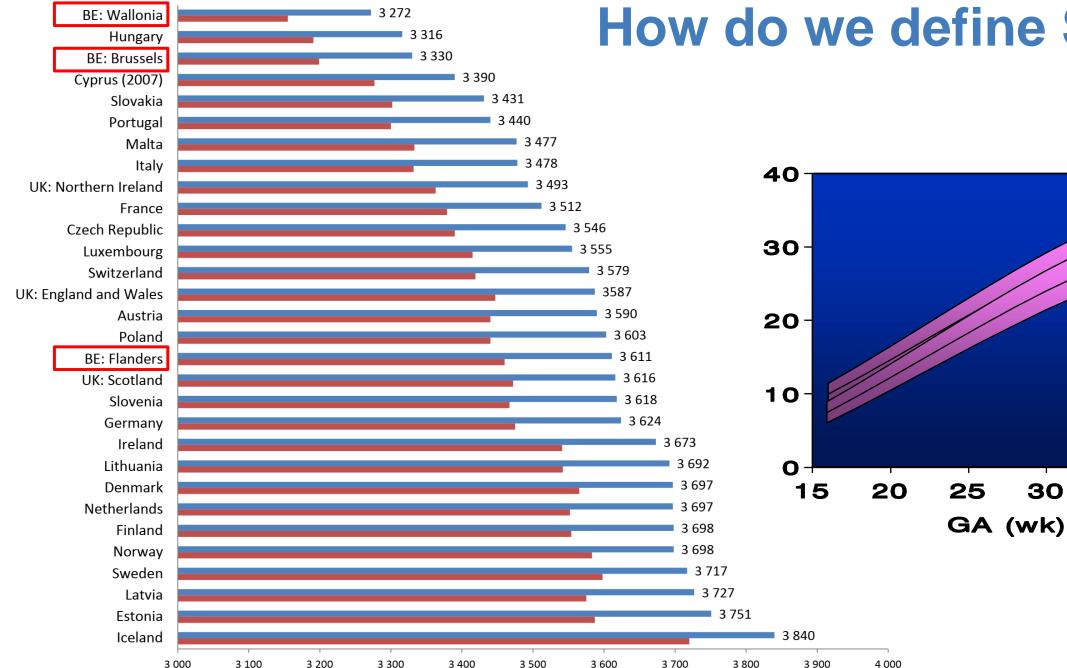
Hadlock (1985) or
Hammami (2018)

Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models

A. HAMMAMI¹, A. MAZER ZUMAETA¹, A. SYNGELAKI¹, R. AKOLEKAR^{2#} and K. H. NICOLAIDES^{1#}

Estimating fetal weight

	A	All pregnancies			BW < 2500 g	
Study	MPE (%) (95% CI)	$AE \pm SD$ (%)	$AE \le 10\%$	ED	$\overline{AE \le 10\%}$	ED
Nzeh (1992) ³⁴	8.1 (-14.6 to 30.8)	10.4 ± 9.5	60.5	14.1	12.9	25.1
Halaska (2006) ³⁵	4.7 (-20 to 29.4)	10.0 ± 9	61.8	10.5	19.3	23.3
Ben-Haroush (2008) ¹⁹	2.8 (-13.9 to 19.4)	7.0 ± 5.6	75.6	8.9	54.1	12.9
Siemer (2009) ³⁶ (small)	-11.1 (-35 to 12.8)	14.3 ± 8.2	32.7	16.5	66.6	11.8
Akhtar (2010) ²⁰	-21.2 (-48.5 to 6.1)	21.7 ± 13.2	19.4	25.4	40.5	28.2
Kehl $(2012)^{37}$ (small)	21.9 (-4 to 47.8)	22.2 ± 12.6	19.1	25.6	45.7	16.8
This study	0.4 (-14.8 to 15.6)	6.2 ± 4.7	80.3	7.8	75.4	8.9
HC, AC, FL						
Hadlock (1985)13	0.7 (-14.5 to 16)	6.3 ± 4.7	79.9	7.8	72.8	9.1
Weiner (1985) ²⁹ (small)	-8.1 (-23.5 to $/.2$)	9.3±6.2	57.0	11.3	57.4	11.1
Ott (1986) ³⁸	2.1 (-14.3 to 18.6)	6.8 ± 5.3	76.4	8.7	57.1	12.1
Combs (1993) ³⁹	0.6 (-16.9 to 18.1)	7.0 ± 5.5	74.7	9.0	54.0	12.7
Dudley (1995) ⁴⁰	-4.0 (-19.1 to 11.1)	7.1 ± 5	73.7	8.7	75.2	8.7
Scott (1996) ⁴¹ (small)	-12.3 (-29.6 to 5)	13.3 ± 7.2	34.7	15.1	77.8	8.3
Schild (2004) ⁴² (small)	-18.1 (-33.9 to -2.2)	18.3 ± 7.5	14.5	19.8	51.5	11.7
This study	-0.3 (-15.4 to 14.8)	6.2 ± 4.6	80.3	7.7	75.8	8.5
BPD, HC, AC, FL						
Hadlock (1985) ¹⁵	2.7 (-12.8 to 18.1)	6.7 ± 5	77.7	8.3	69.8	9.8
Roberts (1985) ⁴³ (small)	15.3 (-5.9 to 36.5)	15.9 ± 9.9	31.6	18.8	41.6	16.5
Ben-Haroush (2008) ¹⁹	2.8 (-13.8 to 19.4)	6.9 ± 5.6	75.6	8.9	53.8	12.9
Chen (2011) ⁴⁴	12.9 (-6 to 31.7)	13.6 ± 8.5	38.1	16.1	26.0	19.5
Chen (2011) ⁴⁴ (small)	-12.6 (-39.4 to 14.2)	15.7 ± 10.1	33.4	18.6	66.0	11.4
Chen (2011) ⁴⁴ (large)	35.6 (-27.7 to 98.9)	36.5 ± 31.3	18.4	48.0	0	87.9
Souka (2014) ⁴⁵	0.2 (-30.6 to 30.9)	8.5 ± 13.2	73.9	15.7	46.8	30.3
Souka (2014) ⁴⁵ (large)	4.5 (-40.1 to 49.1)	12.3 ± 19.7	57.4	23.2	30.8	45.1
Souka (2014) ⁴⁵ (small)	-19.4 (-60 to 21.3)	21.1 ± 19	27.7	28.4	66.9	36.9
This study	0.2 (-14.9 to 15.2)	6.2 ± 4.6	80.4	7.7	75.2	8.6
BPD, HC, AC, FL, GA						
Sabbagha (1989) ⁴⁶	-1.3 (-18.7 to 16.1)	7.1 ± 5.5	74.9	9.0	62.8	11.7
Sabbagha (1989) ⁴⁶ (large)	4.3 (-28.7 to 37.2)	9.4 ± 14.5	71.5	17.3	36.3	34.0
Sabbagha (1989) ⁴⁶ (small)	-2.8 (-18.8 to 13.3)	6.9 ± 5.1	75.4	8.6	73.2	9.4
This study	0.6 (-15.2 to 16.4)	6.5 ± 4.9	79.0	8.1	76.3	8.9
Two-stage screening						
Hadlock (1985) ¹⁵ (HC, AC, FL), Scott (1996) ⁴¹ (HC, AC, FL), Ferrero (1994) ¹⁸ (AC, FL)	0.2 (-16.1 to 16.5)	6.5 ± 5	77.3	8.3	70.5	9.4



EFW formula

WHICH FETAL WEIGHT CENTILE CHART?

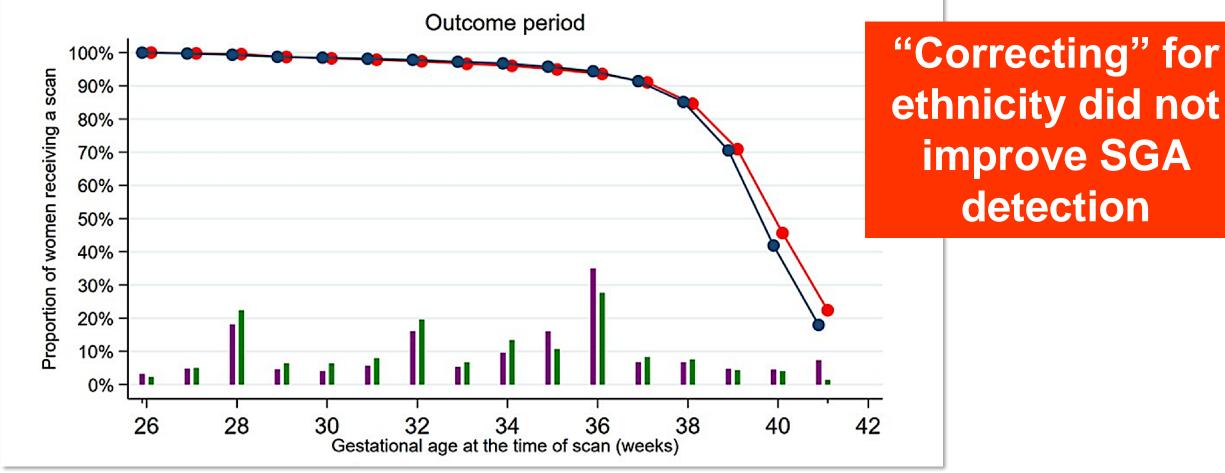
How do we define SGA?

National and regional charts Geography and fetal growth

Sri Lankan fetal/ birthweight charts: validation of global reference for fetal weight and birthweight percentiles

V Shanmugaraja, S G Kumarasiri, S L Wahalawatte, R V Wanigasekara, P Begam, P K C L Jayasinghe, T Padeniya, T Dias EUROPEAN UNION UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND

"Only 10% of fetuses can be SGA in every country" St George's University of London 22.9% World CEE/CIS¹ 8.9% 9.8% East Asia and the Pacific 17.4% Latin America 35.8% and Caribbean Middle >40% (very high) East and North South 30 to <40% 33.5% Africa Asia (high) 20 to <30% (moderate) West and 5 to <20% **Central Africa** (low) <5% 34.5% (low) no current data **Eastern and** Southern Africa no data


Conclusions

In this study, we observed no effect of GAP on antenatal detection of SGA compared to standard care.

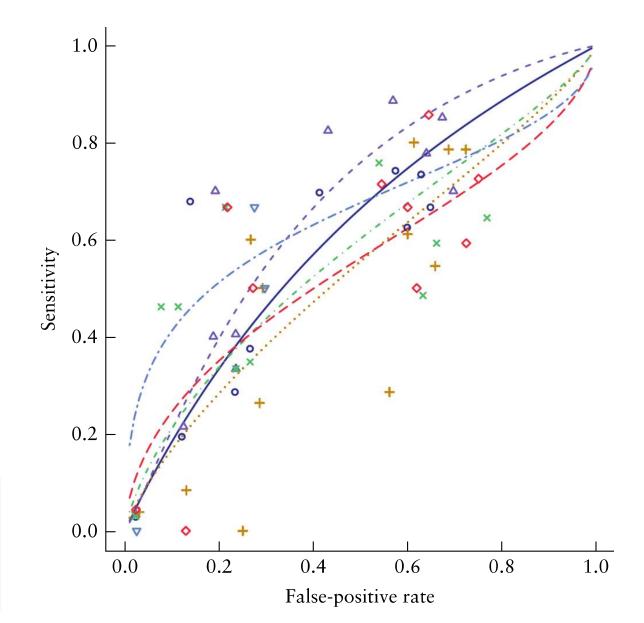
RESEARCH ARTICLE

Evaluation of the Growth Assessment Protocol (GAP) for antenatal detection of small for gestational age: The DESiGN cluster randomised trial

Matias C. Vieira 1,2, Sophie Relpho1, Walter Muruet-Gutierrez 1,3, Maria Elstad 3,

FETAL WEIGHT AND ADVERSE OUTCOME

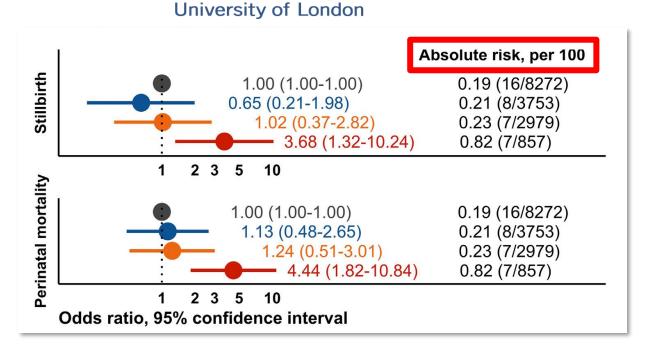
Late SGA: EFW <3rd centile


12 studies, 3639 late SGA 1246 with SGA <3rd centile

OR 1.97 for CAPO OR 4.26 for perinatal death

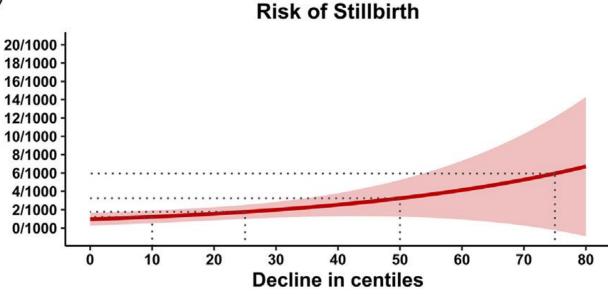
Poor prediction (ROC) AUC 0.61 for CAPO AUC 0.65 for perinatal death

Severe smallness as predictor of adverse perinatal outcome in suspected late small-for-gestational-age fetuses: systematic review and meta-analysis


E. MELER^{1#}, R. J. MARTINEZ-PORTILLA^{1,2#}, J. CARADEUX³, E. MAZARICO¹, C. GIL-ARMAS^{1,4}, D. BOADA¹, J. MARTINEZ¹, P. CARRILLO¹, M. CAMACHO¹ and F. FIGUERAS¹

IS FETAL GROWTH VELOCITY A MORE RELIABLE MARKER FOR STILLBIRTHS?

Late SGA: Fetal growth velocity



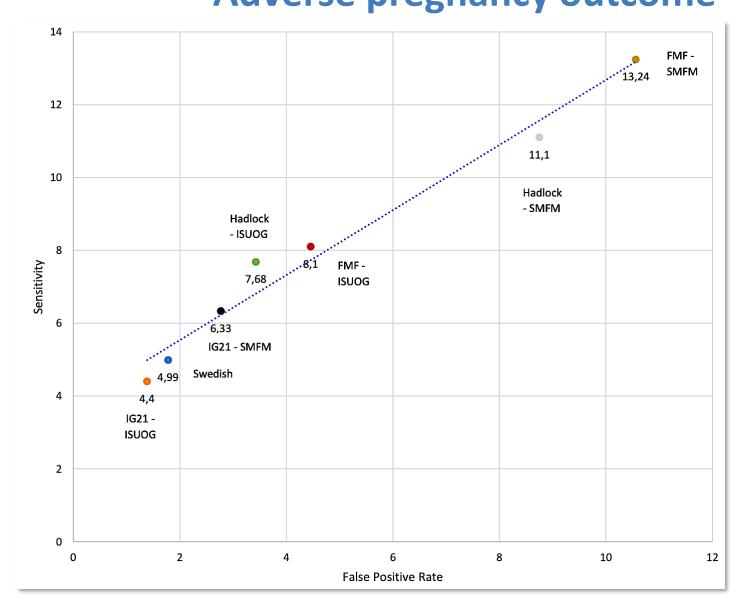
St George's

The magnitude rather than the rate of decline in fetal growth is a stronger risk factor for perinatal mortality in term infants

Mads Langager Larsen, MD; Veronika Schreiber, MClinEpi; Lone Krebs, MD, PhD; Christina Engel Hoei-Hansen, MD, PhD; Sailesh Kumar, FRCS, FRCOG, FRANZCOG, DPhil (Oxon) 15,861 term pregnancies 28 term stillbirths (2/1000 births) Scans at 24 and 36 weeks

Stillbirth and perinatal death only increased with a >50% decrease in growth velocity (5% FPR)

WHY IS FETAL SIZE SUCH A POOR MARKER FOR STILLBIRTH AT TERM?


17,261 pregnancies

EFW by: IG-21, Hadlock, FMF and Swedish

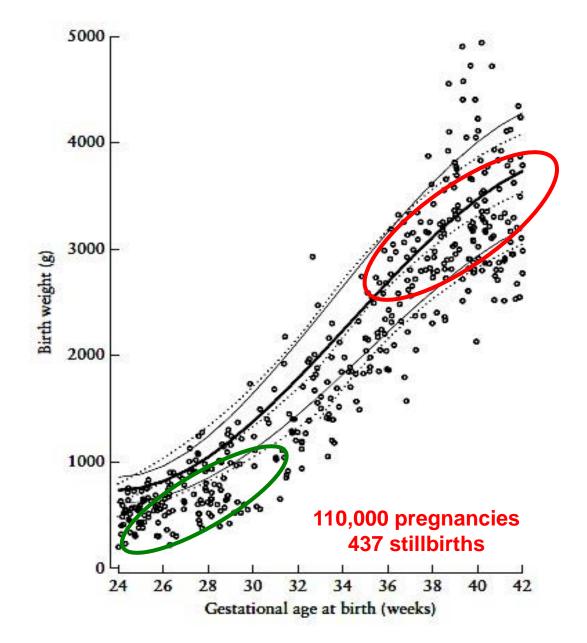
FGR by DELPHI/ISUOG, SMFM or Swedish criteria

PNM, prolonged NICU, Apgar5 <7 and HIE

Fetal chart and FGR combinations Adverse pregnancy outcome

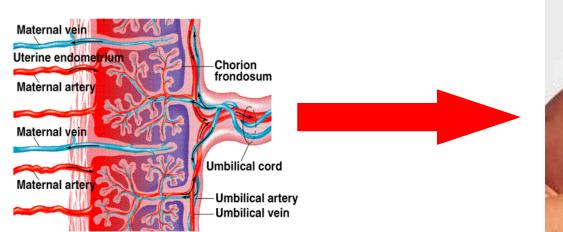
Mascherpa M et al. UOG 2024

Majority of preterm stillbirths are SGA


70% of term stillbirths are not SGA (67% with customisation)

Ultrasound Obstet Gynecol 2016; 48: 602-606 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.17287

Birth weight in live births and stillbirths

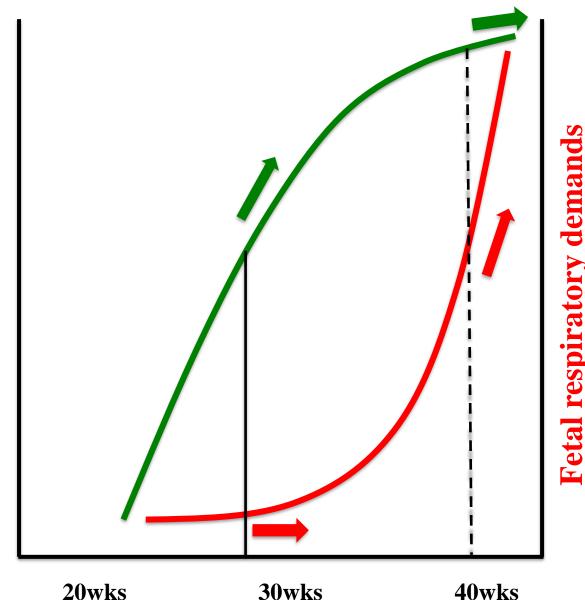

L. C. Y. POON*†, M. Y. TAN*, G. YERLIKAYA*, A. SYNGELAKI* and K. H. NICOLAIDES

Birthweight and stillbirth

SGA: symptom not disease

PATHOLOGY Placental dysfunction **SYMPTOM** Slow fetal growth (Food) Death and disability (O₂)

Stillbirth and developmental handicap occur due to hypoxaemia <u>not</u> malnutrition

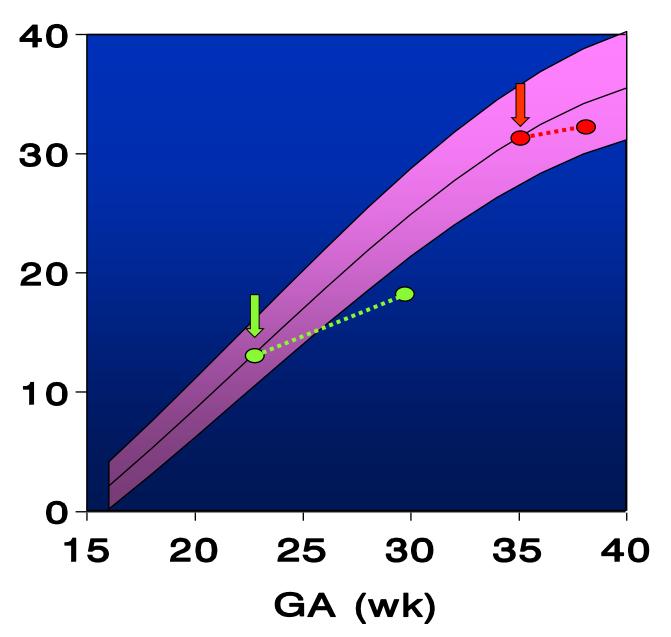

Fetal <u>nutritional</u> and <u>respiratory</u> demands increase differently with gestational age

Fetal nutritional demands

Ultrasound Obstet Gynecol 2018; 52: 5–8 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.19110

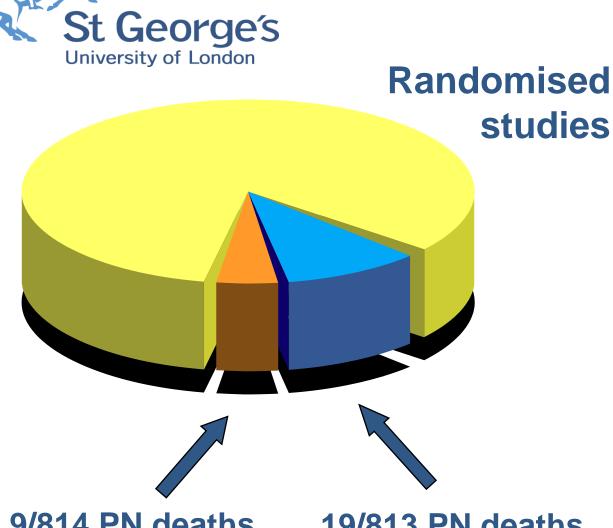
Opinion

Ultrasound fetal weight estimation at term may do more harm than good


Dunsworth HM et al. PNAS 2012

Early and late FGR

Nutrition affected most Long latency to demise Time for SGA to develop


<u>Respiration</u> affected most Short latency to demise SGA seen infrequently

HOW SHOULD WE MONITOR HIGH-RISK PREGNANCIES AT TERM?

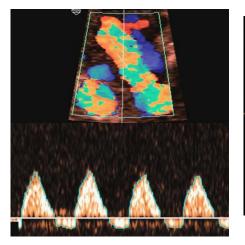
CTG interpretation

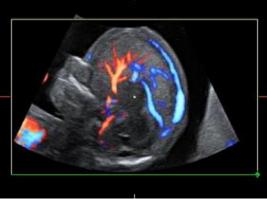
• Frequency of CTG

Conventional CTG R=2.05 (95%CI 0.95 to 4.42)

Computerised CTG RR=0.20 (95%CI 0.04 to 0.88)

9/814 PN deaths in controls


19/813 PN deaths in CTG group


Cochrane Database Syst Rev

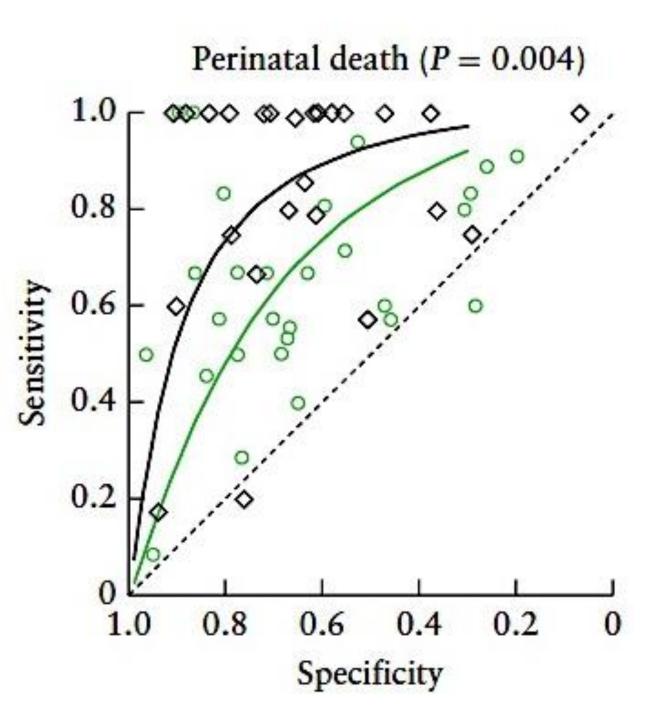
CPR and Mortality

11,576 <u>term</u> pregnancies Within 4 weeks of delivery

Changes in fetal Doppler indices as a marker of failure to reach growth potential at term

J. MORALES-ROSELLÓ*†, A. KHALIL*, M. MORLANDO*, A. PAPAGEORGHIOU*, A. BHIDE* and B. THILAGANATHAN*

N=2832	Crude OR	p-value	Adj OR	p-value
Perinatal de	eath (n=18)			
BW centile	0.96	<0.001	0.98	0.080
UtAD PI	3.36	<0.001	0.63	0.300
CPR MoM	0.003	<0.001	0.004	<0.001
ure to	2.0 1.6 WOW 1.2 0.8			•
, A. BHIDE	0.0 0.	5 1.0 1.5 2.0 Jterine mean		5 4.0

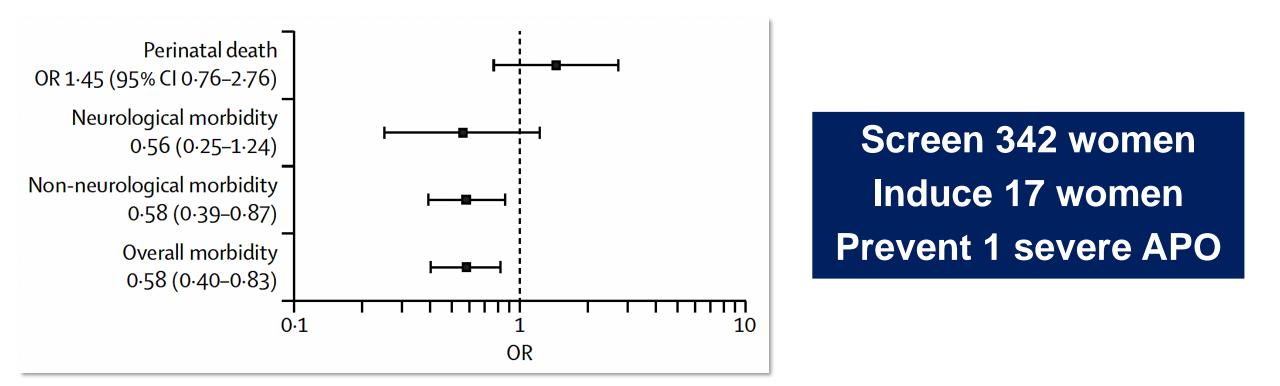


Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis

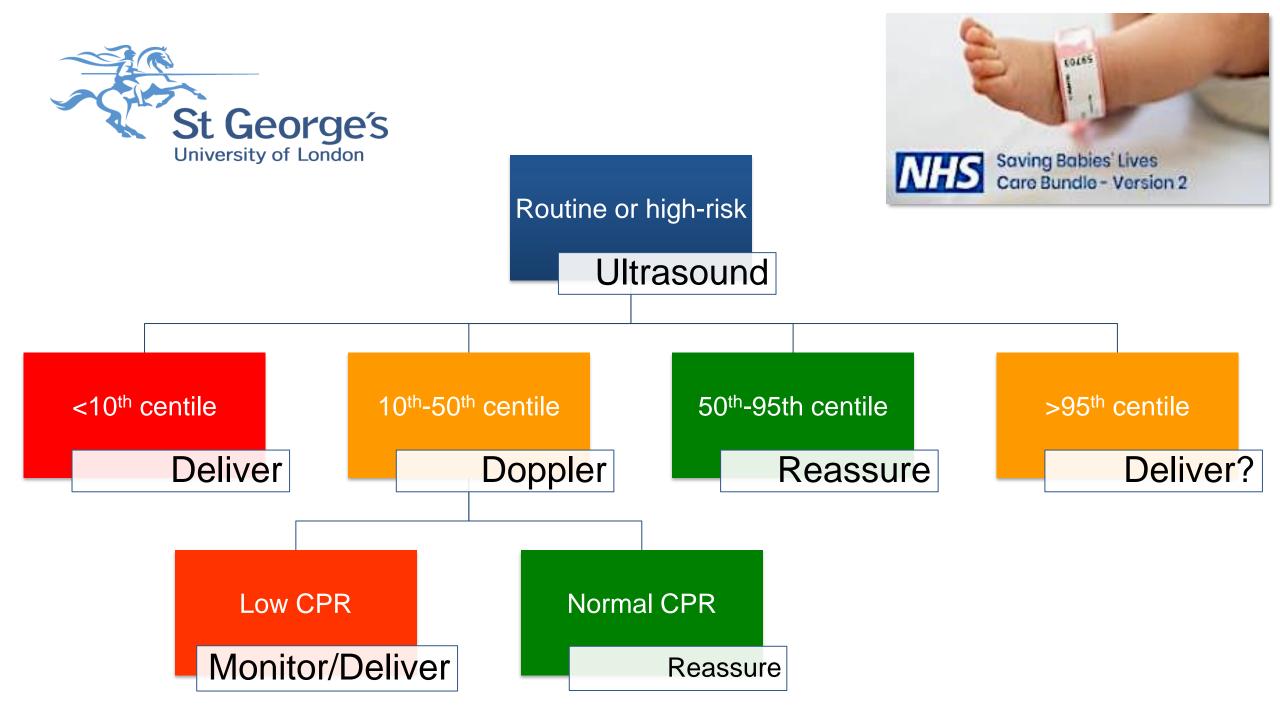
C. A. VOLLGRAFF HEIDWEILLER-SCHREURS¹, M. A. DE BOER¹, M. W. HEYMANS², L. J. SCHOONMADE³, P. M. M. BOSSUYT⁴, B. W. J. MOL^{5,6}, C. J. M. DE GROOT¹ and C. J. BAX⁷

128 studies 47,748 pregnancies

Conclusion Calculating the CPR with MCA Doppler can add value to UA Doppler assessment in the prediction of adverse perinatal outcome in women with a singleton pregnancy.



Term planned delivery based on fetal growth assessment with or without the cerebroplacental ratio in low-risk pregnancies (RATIO37): an international, multicentre, openlabel, randomised controlled trial


Marta Rial-Crestelo, Marek Lubusky, Mauro Parra-Cordero, Ladislav Krofta, Anna Kajdy, Eyal Zohav, Elena Ferriols-Perez, Rogelio Cruz-Martinez, Marian Kacerovsky, Elena Scazzocchio, Lucie Roubalova, Pamela Socias, Lubomir Hašlík, Jan Modzelewski, Eran Ashwal, Julia Castellá-Cesari, Monica Cruz-Lemini, Eduard Gratacos*, Francesc Figueras*, on behalf of the RATIO37 Study Group†

9492 pregnancies scanned at 36-38 weeks Delivery 37wks if SGA¹⁰ and for CPR⁵

	Concealed group (n=4774)	Revealed group (n=4718)	Risk difference* (95%Cl)	p value
Perinatal death, n (%)	13 (0·3%)	13 (0·3%)	0·01 (-0·21 to 0·24)	0.98
Fetal deaths	11	8		
Neonatal deaths	2	5		
Severe neurological morbidity, n (%)	13 (0·3‰)	9 (0·2%)	–0·08 (–0·29 to 0·13)	0.55
IVH grade III/IV	2	0		
PVL	1	0	1.55	
HIE	12	9		
Severe non-neurological morbidity, n (%)	23 <mark>(0·5%)</mark>	9 (0·2%)	–0·29 (–0·55 to –0·056)	0.014
Necrotising enterocolitis	1	0		
Renal failure	1	0		
Cardiac failure	1	0		·
NICU admission ≥10 days†	21	9		
Overall severe morbidity, n (%)	35 (0·7%)	18 (0·4%)	–0·35 (–0·67 to –0·05)	0.022

Placental dysfunction at term Summary

Checklist risk assessment Stop: Customisation **Continue:** 36-week scan EFW Hadlock (HC, AC, FL) EFW chart = neonatal BW chart **Deliver <3rd from 37wks Consider:** Deliver <10th from 39wks **Consider earlier birth for low CPR**

WECANNOTSOLVEOUR PROBLEMS WITH THE SAMETHINKING WEUSEDWHENWE CREATED THEM - Albert Einstein