ULTRASOUND IN LIVER TRANSPLANT

DR GAYATHRI YOGARAJAH

ROYAL FREE HOSPITAL

 \bigcirc

0

Q

て

Q

ACKNOWLEDGEMENTS

• Dr Dominic Yu

 \bigcirc

 \bigcirc

Q

USES & BENEFITS

- Liver transplant irreversible acute and chronic liver diseases
- Detection of complications
- Follow up of early and late complications
 - Vascular (PV/HA/IVC stenosis/thrombosis, pseudoaneurysms, ischaemia)
 - Biliary (leak, strictures, cholangitis)
 - Extrahepatic (collections haematoma, abscess, seroma)
 - Malignancy
- Safe no ionising radiation
- Dynamic, can be performed at bedside post-op

TYPES OF LIVER TRANSPLANT

- Orthotopic liver transplant (OLT) most common, recently deceased donor
- Split graft smaller left lobe (child), larger right lobe (adult)
- Living donor
- Auxiliary part of/native liver retained

LIVER TRANSPLANT SURGICAL ANATOMY

- Arterial anastomosis
- Portal venous anastomosis
- IVC anastomosis

0

 \bigcirc

• Biliary anastomosis

°CLASSIC APPROACH OLT

By Mohit Achanta, TeachMeSurgery [CC-BY-NC-ND 4.0]

 Retrohepatic IVC removed en bloc

 Interruption of venous return when clamping iVC → resultant haemodynamic compromise to vital organs

PIGGYBACK TECHNIQUE

 Donor IVC attached to recipient IVC end-to-side or side-to-side.
Venous cuff from recipient hepatic veins

• PV and HA – end-to-end

 Biliary – duct to duct or Roux-en-Y hepaticojejunostomy

°SPLIT LIVER TRANSPLANTATION

SPLIT - LIVER GRAFTS

LEFT LATERAL SEGMENT LIVER TRANSPLANTATION

 \mathbf{O}

ARTERIAL ANASTOMOSIS

- End-to-end Donor's coeliac axis and recipient's common hepatic artery
- End-to-side, back table reconstructions if anatomical variant
- Conduit recipient aorta (aortohepatic conduit), viscerohepatic (e.g. splenohepatic conduit)

- Donor coeliac trunk patch anastomosed to recipient CHA/GDA branch point (end-toside)
- Case courtesy of Brian Gilcrease-Garcia, Radiopaedia.org, rID: 54640

Carrel Patch

 \bigcirc)

BGG

Ø

^b PORTAL VEIN ANASTOMOSIS

 \cap

0

 \frown

https://radiologykey.com/imaging-of-liver-transplant/

[°]IVC ANASTOMOSIS

О

https://radiologykey.com/imaging-of-liver-transplant/

THE TRANSPLANT LIVER

- Derives majority of supply from hepatic artery (unlike native liver PV)
- Early arterial occlusion graft may not survive
- Arterial complications: thrombosis, anastomotic stenosis, pseudoaneurysm
- Portal venous: thrombosis, anastomotic stenosis, portal hypertension
- Bile duct only supplied by HA
- Biliary complications (20/100)

NORMAL TRANSPLANT LIVER US

- Parenchyma: homogeneous or slightly heterogeneous
- Focal increased echogenicity may reflect contusion/haemorrhage
- No biliary duct dilatation
- If T-tube in situ extrahepatic bile ducts may appear thick-walled
- Pneumobilia may be normal in bilioenteric anastomosis or if sphincterotomy performed
- Small volume perihepatic fluid can be normal in first 10 days

NORMAL TRANSPLANT LIVER US

- Raised RI can be normal in first few days
- Raised RI: vasospasm, post op oedema, increased portal flow, prolonged cold ischaemia time, advanced donor age

[°]NORMAL HEPATIC ARTERY

- Rapid systolic upstroke with continuous diastolic flow
- RI: 0.5-0.8

HEPATIC ARTERY THROMBOSIS

- 8% transplants
- 60% of all vascular complications post tx
- 20-60% mortality
- Early thrombosis first 15 days
- Delayed thrombosis years chronic rejection, sepsis
- Presentation: fulminant liver failure, delayed bile leak, bacteremia
- Mx: urgent revascularisation, may require re-transplant

HEPATIC ARTERY THROMBOSIS

- Nolten and Sproat described "syndrome of impending thrombosis":
- 3-10 days
- Normal initial waveform
- No diastolic flow
- Dampening of systolic peak
- Total loss of hepatic arterial waveform

^bABNORMAL HEPATIC ARTERY- TARDUS PARVUS

• Prolonged acceleration time and decreased resistive index

Ó

[°]ABNORMAL HEPATIC ARTERY – TARDUS PARVUS

- Left intrahepatic artery tardus parvus waveform
- Prolonged acceleration and decreased RI

^bABNORMAL HEPATIC ARTERY

- Focal stricture (arrow) with aliasing at the anastomosis
- Elevated peak velocity and spectral broadening = turbulence

- Vascular anastomotic site
- Secondary to infections
- Fistula can form between aneurysm and biliary tree or portal vein
- Treated with surgery or stent placement

- US: periportal or intrahepatic cystic structure on B-mode US adjacent to/along course of hepatic artery
- Need colour and spectral Doppler to avoid misdiagnosis (e.g. collection)

- Doppler abnormal arterial flow
- Intrahepatic tardus-parvus waveform
- Large pseudoaneurysm monophasic flow

 \cap

Q

PORTAL VEIN THROMBUS

- B-Mode US: intraluminal echogenic filling defect
- Acute thrombus can be anechoic and only identified as a flow defect on colour Doppler

^bPORTAL VEIN THROMBUS

 \bigcirc

Q

^bPORTAL VEIN STENOSIS

 \bigcirc

Q

 \frown

[°] PORTAL VEIN STENOSIS

 \bigcirc

Ó

IVC/HV COMPLICATIONS

- Anastomotic IVC stenosis
- Kinking of the hepatic vein
- Budd Chiari

 \bigcirc

0

O

Q

^bIVC STENOSIS

BILIARY COMPLICATIONS

- 25% patients
- Biliary tree dependent on HA supply
- Bile leak

0

- Anastomotic stricture
- Non-anastomotic stricture
- PSC recurrence
- Calculus

BILIARY COMPLICATIONS

- Leak: perihepatic fluid collection
- Anastomotic stricture: dilated intrahepatic ducts and common duct dilatation to the level of the anastomosis. Distal to stricture, common duct will be normal in calibre
- Non-anastomotic stricture: secondary to ischaemia from HA compromise. Focal segmental intrahepatic or hilar duct dilatation with no obvious mass
- If IHD evaluate hepatic artery closely, and if previous PSC consider recurrence

^bINTRADUCTAL CALCULUS

Ó

[°]ANASTOMOTIC BILIARY STRICTURE

[°]RECURRENT PSC

 \bigcirc

Q

 \frown

MALIGNANCY

• HCC recurrence

Ο

 \square

- Disease in the transplant liver graft
- New malignancy
- Post transplant lymphoproliferative disorder (PTLD)

COLLECTIONS

O

• Bile leak

 \mathcal{O}

6

 \bigcirc

- Haematoma
- Seroma
- Abscess
- Ascites

[°]BILE LEAK

Q

 \bigcirc

Ó

REFERENCES

- Ultrasound in Liver Transplant Dr Dominic Yu
- Mohit Achanta, TeachMeSurgery, https://teachmesurgery.com/transplant- surgery/organ-transplantation/liver/
- https://radiologykey.com/imaging-of-liver-transplant/
- US of Liver Transplants: Normal and Abnormal https://pubs.rsna.org/doi/10.1148/rg.235035031#F3A Slides: 19, 21, 24-26, 29-31, 34, 35, 37, 39, 40, 43-45, 48

O

 \bigcirc

Q

6

 \bigcirc

 \bigcirc

Ø